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ABSTRACT

The Mississippian Turner Valley Formation at the Quirk Creek field is composed of a 

shallowing-upward sequence o f shallow platform to restricted lagoon and sabkha 

carbonates with a thickness of 115 m. Carbonates of the Turner Valley Formation have 

undergone a complex diagenetic history. Major diagenetic events include: cementation, 

compaction, silicification, anhydritization, and dolomitization. Various mechanical and 

chemical compaction fabrics are present and formed during different diagenetic stages. 

All calcite cementation occurred during early diagenetic stages. Silicification occurred 

as replacements and cements in chert nodules. Cherts may have formed during relatively 

early stages after calcite cementation and before massive dolomitization. Burial anhydrite 

usually coexists with massive dolomite, and they may have similar origins.

The most important of all diagenetic events involves a continuous spectrum of early to 

late dolomitization. Four types or generations of dolomite are identified: microdolomite, 

patchy dolomite, pervasive matrix dolomite and coarse dolomite. Microdolomite (4-10 

ftm) is dense, and locally occurs only in sabkha lithofacies. It is characterized by its high 

Sr, Na concentrations and relatively heavy 5lB0  values (0 to -2.22 per mil PDB). These 

parameters suggest a sabkha evaporative dolomitization origin. However, its perfect 

crystal shape, overgrowth rims and variable values of 87Sr/86Sr (0.70773 to 0.70874) may 

represent recrystallization during late stages of dolomitization. Patchy dolomite (20 to 

200 /tm) floats between skeletal grains, and is distributed along dissolution seams and 

early stylolites (5**0, -0.79 to -3.52 per mil PDB). This type of dolomite is interpreted 

to have formed during early chemical compaction, and it also underwent some 

modification during late dolomitization events. Pervasive matrix dolomite or massive 

dolomite (20 to 300 ^m) is the most abundant type of dolomite with predominantly 

reservoir porosity. It has modified and/or obliterated most earlier diagenetic fabrics. 

Since pervasive matrix dolomite has the lowest trace-element (e.g. Sr, Na) 

concentrations, slightly radiogenic Sr isotopes (0.70834 to 0.70848), slightly depleted 

6180  (-1.11 to -5.46 per mil PDB), and widely coexists with secondary anhydrite, a

iv
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mixing zone associated with a regional groundwater system beneath the 

Mississippian/Pennsylvanian unconformity is envisaged here for its formation. The fluids 

resulted from flushing the overlying evaporites by meteoric water and mixing it with 

seawater could have been the source of secondary anhydrite as well as massive dolomite. 

Megadolomite (0.5 to 2 mm) consists of coarse, euhedral rhombs and moldic-dolomite. 

It replaces massive dolomite and crosscuts late stylolites. Megadolomite has higher Fe, 

Mn, and radiogenic Sr (0.70836 to 0.70875) and lowest S'®0 (-2.12 to -6.47 per mil 

PDB), suggesting formation in a later and deeper burial environment.

The reservoir porosity of the Turner Valley Formation is mainly controlled by the 

degree o f dolomitization. The most abundant porosity is presented in carbonates with a 

dolomite component o f 70% to 95%. The potential reserves could be found in these 

carbonates.

v
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CHAPTER I 
INTRODUCTION

1.1 PREAMBLE

Mississippian carbonates o f the Western Canada Basin are extremely important 

hydrocarbon hosts. They collectively yield 20.8% of the basin’s marketable gas reserves 

and 14.4% of recoverable oil reserves (GSC Maps 1558A, 1559A). Remaining 

undiscovered gas potential is considerable but no published figures are available. 

Approximately 340 x 10 m3 o f known reserves o f recoverable light and medium oils 

occur in Carboniferous strata in the Western Canada Basin and there remains an 

estimated further potential o f 43 x 10 m3 of undiscovered oil (Conn and Christie, 1988). 

These major reserves are trapped in the Turner Valley Formation and its lateral 

equivalents in thrust-faulted anticlinal structures o f the Foothills and Plains of 

southwestern Alberta (Stein, 1977). The Turner Valley Formation has been recognized 

as a highly prospective horizon ever since the discovery o f the Turner Valley field in 

1924. Subsequent discovery of condensate and sulphur-rich gas accumulations in the 

general area, at Jumping Pound (1947), Sarcee (1954), Wildcat Hills (1958), Jumping 

Pound West (1961), Quick Creek (1967), and so on, have proven that the Turner Valley 

Formation contains substantial hydrocarbon reserves (Rupp, 1969).

Quirk Creek, one of Foothills fields, lies approximately 40 km southwest of Calgary, 

Alberta (Fig.1.1). Typical reservoir rock consists of partially to completely dolomitized 

packstone and wackestone distributed in the top and base (?) o f the Turner Valley 

Formation. All limestones in the Turner Valley Formation have been variably 

dolomitized with a dolomite component ranging from 10 to 100 per cent.

1.2 PREVIOUS W ORK

Douglas (1958, 1959 in Bamber et al., 1981) first described the lithology and 

stratigraphy of Mississippian exposures in the Foothills and Southern Rocky Mountains 

and called them the "Rundle Group”; we now know them as Livingstone (Pekisko,

1
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Shunda, and Turner Valley), Mount Head, and Etherington Formations, filing (1959) 

provided a detailed account of the Mississippian sequence at the Moose Mount 

culmination, and sketched the oscillation of sedimentary environments very clearly. Units 

recognized by filing include the Banff, Pekisko, Shunda, and Turner Valley Formations, 

as they are used today. Moreover, filing (1959) studied dolomitization o f the Turner 

Valley Formation, and first proposed the burial compaction model o f dolomitization.

Middileton (1963, in Bamber et al., 1981) studied sedimentary facies variations within 

the Moose Mountain culmination. Macqueen and Bamber (1967, 1981) correlated the 

lithology and stratigraphy of the Banff, Pekisko, Shunda, Turner Valley Formations in 

a regional study. Murray and Lucia (1967) studied dolomitization o f the lower parts of 

the Turner Valley Formation in Moose Mountain and proposed that the most completely 

dolomitized parts o f the formation were originally composed mainly o f lime mud; 

limestones with less than 15% dolomite were deposited as mud-free skeletal limestones. 

Ng and Jones (1989) also studied the stratigraphy, depositional environments and 

diagenesis o f Upper Mississippian to Lower Permian strata in Talbert Lake area, Jasper 

National Park, Alberta. All these studies mentioned above dealt mainly with the 

stratigraphy, lithofacies, sedimentary environments and some aspects o f diagenesis of the 

Turner Valley Formation. Their conclusions were not supported by any geochemical 

data.

1.3 OBJECTIVES O F STUDY

This study is the first to adopt geochemical techniques such as isotopic analyses, major 

and minor elemental analyses and cathodoluminescence observations, in addition to 

detailed petrographic observations, to examine and analyze the carbonates and its 

diagenesis in the Turner Valley Formation o f the Quirk Creek field. The objectives o f 

this research are: (1) to determine the various lithofacies, their distribution and 

sedimentary environments; (2) to determine the type, distribution and features of various 

diagenetic event, and a paragenetic sequence; (3) to interpret different types of dolomite, 

and to establish models of dolomitization; (4) to evaluate the nature and development of 

porosity related to diagenesis.

3
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1.4 METHODS O F STUDY 

The field work was conducted in the summer of 1991. Carbonate rocks of the Turner 

Valley and those around the contacts between the Turner Valley Formation and the 

underlying Shunda and overlying Mount Head Formations were selectively sampled in 

the vertical succession at obvious changes in lithology from three wells in the Quirk 

Creek field. The three wells are 12-22, 14-12, 6-7 (Fig. 1.2). Approximately 100 thin 

sections were examined under a standard petrographic microscope. All thin sections were 

stained with a mixture of Alizarin Red-S and Potassium Ferricyanide according to the 

procedure outlined by Dickson (196S). Seventy thin sections were dyed with a blue 

fluorescent dye for the recognition o f microporosity using an epoxy resin and blue 

fluorescent dye mixture following the method by Yanguas and Dravis (1985). All thin 

sections were examined under a Cathodoluminescence (CL) device, using a Tech nosy n 

Model 8200 MKII and a Luminoscope. Operating conditions for cathodoluminescence 

were a  beam of 12 to 15 kv range and a current intensity of about 0.42-0.43 mA. 

Fluorescence was also studied using a Nikon EPI Fluorescence attached to a microscope. 

Eight doubly polished thin sections were prepared for the study o f fluid inclusions of the 

Turner Valley carbonates and impurities, being operated on a Linkam TH600 stage. Ten 

slightly polished slabs were etched with 50% acetic acid for two minutes, and coated 

with carbon, were examined under a NANOLAB scanning electron microscope (SEM) 

to study diagenetic textures and microporosity present. Four uncovered, polished thin 

sections were analyzed under an electron microprobe for trace elements. Each thin 

section was then covered by a thin layer o f carbon and analyzed using a Cameca 

Camebax SX50 equipped with three crystal spectrometers and a back-scattered electron 

detector (BSE). The operating conditions during analysis were an acceleration voltage of 

15 kV, a measured beam current of 6 nA, and a  beam diameter between 1 and 10 pm. 

The standards used were wollastonite (Ca), MgO (Mg), MnTi03 (Mn), hematite (Fe), 

strontianite (Sr), and albite (Na). Triplicate analyses o f Mg and Ca revealed a precision 

better than 0.5 mol%.

Forty-four samples from calcite and dolomite components were chemically analyzed 

using an atomic absorption spectrometer for major and minor elements. A microscope-

4
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mounted drill assembly was used to sample crinoids, calcite cements, as well as various 

types of dolomite. Powdered dolomite and calcite samples were put into an oven at 115°C 

for at least two hours. After weighing the dry powder, it was dissolved in solutions of 

20 ml of 6% and 8% (v/v) HCI for calcite and dolomite, respectively, for four hours 

(e.g. Brand and Veizer, 1980). Six elements, Ca, Mg, Na, Sr, Fe and Mn were 

analyzed on a Van an Spectra AA300 Spectrometer. KCI (2000 ppm K) was added to 

sample and standard rock solutions for Sr analysis. Insoluble residues were subtracted 

in chemical calculations. The standard was prepared from the Standard Reference 

Material 88b (National Bureau of Standards, dolomitic limestone). Systematic error in 

percentage is reported in decreasing order: Na (5.2), Mn (4.8), Mg (2.8), Sr (1.1), Ca 

(0.3), and Fe (0.3). O, C, S and Sr isotopes o f carbonates and sulfates were studied. 

Calcite and dolomite components were obtained using a microscope mounted drill 

assembly. Each sample was then reacted with 100% phosphoric acid at 25°C for calcite 

and at 50°C for dolomite. Samples containing both calcite and dolomite were subjected 

to chemical separation techniques described by AI-Aasm et al. (1990). AH extractions of 

O, C, S were done at the Stable Isotope Lab, University of Windsor. The evolved COj 

and S 0 2 gases were anlysed for C, O and S isotopes using a  SIRA-12 mass spectrometer 

at the University of Ottawa. The 5l80  and 513C were reported relative to PDB. Precision 

is better than 0.1 per mil. Sr isotopes were analyzed at the University of Bochum in 

Germany. Sample analysis was performed on a Finnigan MAT 262 with 5 fixed 

collectors. 87Sr/“ Sr ratios were normalized to *8Sr/MS r= 8 .375209. NBS and ocean water 

were used as standard references. Precision was better than 0.00010.

5
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CHAPTER n  
SEDIMENTOLOGY AND STRATIGRAPHY

2.1 REGIONAL SETTING

In western Canada, the Mississippian succession consists of an eastern belt of thick 

platform carbonates and detrital elastics that grade laterally into a  western belt o f thin 

basinal shales across a transitional carbonate platform margin with a very low 

depositional slope. These two sinuous lithofacies belts extend from southern Alberta and 

British Columbia northwestward to the northern Yukon Territory (Bamber et a!., 1980).

In general, the Mississippian succession is grossly regressive upward commencing with 

open marine shales o f the Banff Formation. A similar lateral sequence, but far less 

pronounced, produces more restricted beds to the east in any one "time" unit. 

Superimposed on the gross cycle are minor episodes o f transgression and regression. In 

the early Mississippian sequence, prolific and geologically unique echinoderms were 

developed. The Osagian and early Meramecian were characterized by the development 

o f carbonate banks and shoals over much of southern Alberta. Enormous volumes of 

echinoderm and bryozoan limestones accumulated in the Pekisko, Turner Valley, and 

Livingstone formations; peritidal carbonates and evaporites (Shunda and Mount Head 

Formations) accumulated to the east o f the banks during late Osagian time (Stein, 1977).

2.2 REGIONAL STRUCTURAL SETTING

Surface exposures o f Rundle Group strata in the vicinity o f Moose Mountain outline 

the core of a large doubly plunging, faulted anticline, loosely referred to as "Moose 

Dome". Quirk Creek is located at the southeast end of "Moose Dome". Moose Mountain 

is one o f a series o f structural highs, or culminations, that occur at intervals along the 

regional northwest to southeast strike within the Foothills. Many of these culminations 

bring inliers o f Palaeozoic rocks to the surface to form small mountains of carbonate 

rock above the more widespread, but less resistant, Mesozoic shale and sandstone 

(Bamber et al., 1988). Hydrocarbon reservoirs are common in culminations within the

6
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Foothills, typically at considerable depth. The structure surrounding the Moose Mountain 

culmination consists of a series of folds and imbricated, west dipping thrusts, the latter 

separating discrete "plates" of strata. At depth, a few gently dipping thrusts, or sole 

faults, o f large displacement, separate large fault plates. The sole faults splay upwards 

to form more numerous plates and high-angle thrusts o f small to moderate displacement 

at the surface o f the Moose Mountain culmination. The orientation and displacement of 

structures indicate a major southwest-northeast direction of compression, with crustal 

shorting and translation toward the northeast (Fig 2.1).

2.3 REGIONAL STRATIGRAPHY

In southwest Alberta, Mississippian stratigraphy is characterized by a lower, micritic 

and argillaceous Banff Formation and an upper, resistant Rundle Group. Table 2.1 shows 

the regional variations of the Mississippian succession.

Within the platform carbonates o f the overlying Lower Rundle Group, Macqueen and 

Bamber (1967) recognized an eastern peritidal lithofacies and a western open marine 

lithofacies. The eastern lithofacies is distributed in the central Foothills, Rocky 

Mountains and Southern Alberta Plains and consists o f four formations in ascending 

order: Banff, Pekisko, Shunda and Turner Valley Formations (Fig. 1.1). The Pekisko 

and Turner Valley Formations are predominantly echinoderm-rich limestones and 

dolomites, and the intervening Shunda Formation is dominated by wackestones, 

mudstones with evaporite solution breccia and dolomite assemblages (Macqueen et al., 

1967). The western lithofacies, which is distributed in the Rocky Mountains near Banff 

and in southeast Alberta, consists of the Banff and Livingstone Formations, which are 

predominantly clean echinodermal limestones and their dolomite equivalents. Therefore, 

Macqueen and Bamber (1967) suggested that the Livingstone Formation is the lateral 

equivalent of the Pekisko, Shunda and Turner Valley Formations. The upper Rundle 

group is composed of the Mount Head Formation, which consists predominantly of 

shallow marine limestone with supratidal carbonates and the Etherington Formation with 

various facies. The Mississippian succession is regionally overlain disconformably by 

Pennsylvanian strata.

7
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Fig.2.1. Mississippian regional structural profile o f southwestern Alberta without scale 

(After Procter et a l . , 1968).

Table 2.1. Correlation o f Mississippian Formations o f southwestern Alberta, 

(modified from Macqueen et al., 1967; Bamber et al., 1981).

Mount Head 
Area

Moore Mt. 
Area

Banff-Jasper 
Front Ranges

Bow Valley 
Front Ranges

upper
Etheringtonmiddle

lower

Mount HeadMount Head
Mount Head

r -i

Turner ValleyTurner ValleyTurner Valley
Livingstone

ShundaShunda• Shunda

PekiskoPekiskoPekisko

Banff
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2.4 STRATIGRAPHY O F THE TURNER VALLEY FORMATION

In the subsurface of southwestern Alberta, the Turner Valley Formation consists of 

widespread shallow marine carbonates dominated by echinoderm and bryozoan debris and 

carbonate muds. The Turner Valley Formation has a thickness o f about 115 m in Quirk 

Creek and, regionally, is underlain unconformably by dark micritic carbonates of the 

Shunda Formation, and overlain unconformably by peritidal micritic limestones and 

dolomites o f the Mount Head Formation (Bamber et al., 1981).

The fivefold-subdivision of Rupp (1969) for the Turner Valley Formation in the 

subsurface of the Jumping Pound Field are somewhat parochial and not widely used 

today. However, three informally (industry influenced) named members, "Lower Porous" 

(Elkton), "Middle Dense”, and "Upper Porous", are often applied and are also adopted 

in this thesis.

The "Lower Porous" (or Elkton) member is the lower part o f the Turner Valley 

Formation. In Quirk Creek, it is about 43 meters thick. The base o f the Elkton consists 

predominantly o f an alternation of echinoderm or echinoderm-bryozoan grainstones and 

packstones. In Quirk Creek, the Elkton was terminated by a minor regressive phase 

which resulted in the deposition of tight wackestone and even mudstone. In many 

grainstones or packstones, the calcitic component o f skeletal grains is still retained, 

although some have been completely dolomitized. Some skeletal limestones show cross- 

bedded depositional structures (Plate 2.1). Anhydrite often replaces some matrix 

materials and calcite cements. Primary porosity (intergranular) is very low, usually 

occluded by calcite cements, anhydrite and patchy dolomite, but locally leached fragment 

become significant, especially in packstones and wackestones.

The "Middle Dense" member is variable in thickness with a range from 20 to 30 

meters, and consists predominantly of wackestones and mudstones containing some 

scattered clastic quartz grains. The major part of this member is composed of nearly 

completely dolomitized limestones. Secondary porosity is intercrystalline and 

fossilmoldic. The deposition of this member represents the most regressive phase, from 

restricted lagoon to sabkha deposition, within the Turner Valley Formation (Rupp, 1969).

The "Upper Porous" Member represents a return to more normal marine circulation,

9
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H ate  2.1. Core photography of cross-bedded, fine- to medium-grained, 

crinoidal grainstone. Scale in cm. Core 14-12, depth 7118 m.

10
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and is characterized by the deposition of echinoderm and echinoderm-bryozoan bearing 

grainstones, packstones and wackestones to mudstones. Grain size is generally smaller 

than that of the Elkton, changing vertically upward from coarse to fine. Besides minor 

primary intergranular porosity, much fossilmoldic and intercrystalline pores are present, 

sometimes lined with solid hydrocarbons. This member is about 47 meters thick at Quirk 

Creek.

2.5 LITHOFACIES O F THE TURNER VALLEY FORMATION 

The sediments in the Turner Valley Formation are typically medium to thickly bedded 

limestones which were deposited in the Mississippian Period in Quirk Creek. They are 

somewhat similar to those described by Macqueen (1966), Murray and Lucia (1967), and 

Bamber et al. (1981) in the Moost Mountain and Canyon Creek areas.

The limestone and dolomitic limestone in the Turner Valley Formation in Quirk Creek 

are composed predominantly of crinoids, bryozoan, and other skeletal particles; smaller 

in volume, including brachiopods, corals, foraminiferas and calcareous algae. The 

amount of lime mud varies in different depositional environments.

All Turner Valley limestones are regionally dolomitized (Illing, 1959; Bamber et al., 

1981). In spite o f the fact that some indication of pre-diagenetic fabrics is often evident, 

or even clear in some phases, completely dolomitized limestone fabrics are so obliterated 

that they can be described only by their crystallization texture. Based on the generalized 

classification of Dunham (1962), five major lithofacies are identified: grainstone, 

packstone, wackestone, mudstone and sabkha mudstone, and some subfacies are also 

described in this thesis.

2.5.1 Grainstone Facies 

Grainstones are easily recognizable in both hand sample and under the microscope. 

They generally appear grey or brownish grey in colour. Most grainstones in Turner 

Valley are calcarenites, calcirudites and their dolomitized equivalents, with varying 

proportions of coarse echinoderm and bryozoan fragments. Most of the remains of 

crinoids are columinals and plates, and less crinoid spines are present. Bryozoans are

11
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present mostly as complete fronds and fenestrate forms. Axial canals of both echinoderm 

columnals and bryozoan zooecia are sometimes filled with some micrite.

Grainstones still consisting of calcite components commonly have little porosity due to 

compaction and tight cementation by syntaxial overgrowth cement, and poikilotopic 

cement. Secondary anhydrite and patchy dolomite also fill some pores. However, in 

highly dolomitized grainstones, much secondary porosity developed (details in Chapter 

V). Three subfacies can be recognized in this facies: echinoderm grainstones, 

echinoderm-bryozoan grainstones and oolitic grainstones.

Echinoderm  Grainstone: In Quirk Creek, Turner valley grainstones are predominantly 

composed o f echinoderm skeletal grains. In crinoid grainstone lithofacies, 90% is crinoid 

skeletal constituents (Plate 2.2). Crinoid grainstones are characterized by a coarse to 

very coarse grain size (1-20 mm). Sorting is moderate. Grains often have close packing 

with extensive grain interpenetration. Large and small crinoid fragments characteristically 

show typical single-crystal extinction, still retain single-crystal structure, but microtexture 

is obliterated. Some o f these single-crystal fragments and their overgrowths are in optical 

continuity. Twin zones or/and cleavages of calcite crystals are continuous from grain to 

cement. Varying amounts o f dolomite and anhydrite are present as replacements of 

calcite cements and skeletal fragments.

Echinoderm-Bryozoan Grainstone: some of the Turner valley grainstones in Quirk 

Creek consist o f closely packed, medium to coarse grained accumulations of echinoderm 

and bryozoan remains (Plate 2.3). This lithofacies shows considerable variations in grain 

size and sorting.

Oolitic Grainstone: oolitic grainstones of the Turner Valley formation in Quirk Creek 

are very rare, occurring only at the upper parts o f well 6-7 and the bases o f well 12-22 

and well 14-12. They consist o f concentric layers of microcrystalline calcite surrounding 

nuclei o f echinoderm and bryozoan fragments (H ate 2.4). Oolites coexist with superficial 

oolites, which have thin concentric coatings, and also coexist with asymmetric oolites, 

suggesting formation in agitated waters (Wilson, 1975). Individual oolites vary from 0.5 

to 2 mm with an average diameter around 1.5 mm.

12
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Plate 2.2. Echinoderm grainstone subfacies. Grains are crinoids, patchy 

dolomitic rhombs are distributing between crinoids. Note crinoid columnals 

and their accompanying rims exhibit continuous, well-developed twinning.

H ate  2.3. Echinoderm-bryozoan grainstone facies. Note rhombs o f patchy 

dolomite are only presented in bryozoans.

13
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2.5.2 Packstone Facies

In hand samples, packstones are similar to grainstone. They are grey and brownish grey 

in colour. Packstones o f the Turner Valley Formation consist of calcaienites and 

calcirudites of echinoderm and bryozoan fragments or dolomite equivalents. Packstones 

have been strongly dolomitized, with the proportion of dolomite varying between 20 and 

80%, which has obliterated the primary matrix texture. Two packstone subfacies are 

recognized in the Turner Valley Formation: Echinoderm packstone and echinoderm- 

bryozoan packstone (Plate 2.5). They are similar in grain size and texture, but the 

difference is the type of skeletal components.

2.5.3 Wackestone and M udstone Facies

Wackestones and mudstones are discussed together here, because they have several 

characteristics in common such as their occurrence as discrete units interbedded with 

packstones, and are vertically and horizontally gradational with each other, and both 

formed thin to thick beds. The skeletal debris is predominantly crinoids with little 

bryozoan and other detritus (Plate 2.6). The debris occurs randomly throughout the 

matrix, although they occur also grouped together on pods and occasionally as discrete 

layers. Most calcitic wackestones have been highly dolomitized from 50 to 100%. 

Mudstones usually do not have skeletal fragments, or are very rare if any. Mudstones 

have almost completely dolomitized.

2.5.4 Sabkha M udstone Facies

This lithofacies rarely occurs in the Turner Valley Formation of the Quirk Creek field. 

The rock is composed o f uniform grey to dark brown microcrystalline dolomite (Plate 

2.7). Primary anhydrite is presents in the lithofacies, and has typical chicken-wire 

texture. In some thin sections, solution breccia structure is observed, probably resulting 

from the dissolution o f primary sulfate. This lithofacies is very thin, usually thinner than 

2 meters, and occurs locally in the middle and upper parts of the Turner Valley 

Formation, and is absent at one (14-12) o f the three wells in the Quirk Creek field.

14
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Plate 2.5. Packstone facies. Some skeletal grains retains calcite mineralogy,

whereas matrix have been dolomitized.
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Plate 2.6. Wackstone facies. Skeletal crinoids are still calcite mineralogy.

Matrix have been completely dolomitized.

Plate 2.7. Sabkha mudstone facies. Microdolomite has replaced all precursor 

micrite. White colour minerals are megaquartz grains.
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2.6 ENVIRONMENTAL INTERPRETATION

The abundant normal marine fauna of echinoderms and bryozoans, and cross-bedded 

skeletal carbonates suggest that they were deposited in a broad, stable, slowly subsiding 

sl.allow marine carbonate platform adjacent to the emergent, low relief craton (Bamber 

et al., 1981). A model showing the relationship between environment, sediment type and 

rock type is illustrated in Fig. 2.2 (modified from Bamber et a l., 1981). Four general 

lithologic assemblages, corresponding to environments A to D, are recognized, and 

several energy levels o f sedimentation are indicated. This model can be applied to Turner 

Valley carbonates in Quirk Creek as follows: (1) Medium- to very coarse-grained, oolitic 

and skeletal grainstone (environment B)-high energy level, accumulating in barrier shoals 

and tidal flats close to sea level where wave and current action are the strongest (the base 

o f the Elkton and the base o f the "Upper Porous" Member). (2) Fine to coarse grained 

skeletal grainstones and packstones (environment A)-moderate to high energy level, 

reworking o f debris from echinoderm and bryozoan banks by moderate to strong currents 

(the upper parts o f the Elkton and the "Upper Porous" Member). (3) Wackestones, 

mudstones, and microcrystalline dolomite with primary sulfate (environment C and D)- 

low energy level, accumulating within shallow saline lagoon and tidal flats grading to 

supratidal sabkha. All these environments vertically occur in cycles from high energy 

to low energy within the sedimentary sequence of the Turner Valley carbonates.

The Elkton member has the most abundant and very coarse skeletal grains of the 

echinoderm and echinoderm-bryozoan, with minor oolites, suggesting that they were 

deposited in a shallow shoal (B) within the zone of wave agitation. Some packstones and 

even wackestones are present in the Elkton member, represent the intervening of 

relatively low energy (A). The large amount o f wackestones and mudstones in the 

"Middle Dense” member represents deposition in a restricted lagoon and even sabkha 

environment (from C to D). In the "Upper Porous"member, smaller amounts o f coarse 

grained grainstones and packstones grade upward to larger amounts o f wackestones and 

mudstones, suggesting that the depositional environments became shallow and energy 

level gradually decreased (from A to C and D).
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Fig.2.2. Diagrammatic interpretation of the Turner Valley depositional environments,

southwestern Alberta (modified from Bamber et al., 1981).
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CHAPTER m  
DIAGENESIS AND GEOCHEMISTRY 

OF THE TURNER VALLEY FORMATION

3.1 INTRODUCTION

The diagenesis of carbonate sediments encompasses all those natural processes which 

occur and affect the sediments or sedimentary rocks after deposition until the realms of 

incipient metamorphism at elevated temperature and pressure (Tucker and Wright, 1990). 

The Turner Valley Formation has a complex diagenetic history with diverse spatially and 

temporally distributed features. Early diagenetic fabrics have been modified, even 

obliterated by later diagenetic events; meanwhile, later diagenesis has been affected, and 

even controlled, by earlier fabrics.

A detailed paragenetic sequence is listed in Table 3.3 (section 3.11). Major diagenetic 

events including cementation, compaction, silicification, anhydritization and 

dolomitization, are discussed using petrographic observations and geochemical results, 

according to the types and temporal order of diagenetic events.

3.2 M ICRITIZATION

This process is one where bioclasts are altered on the seafloor, or just below, by 

endolithic algae, fungi and bacteria (Tucker et al., 1990). Therefore, it is the initial phase 

of diagenesis of carbonate sediments occurring while still in the marine environment. The 

skeletal grains were bored around the margins, and the holes filled with fine-grained 

sediments or cements. These borings later formed rims or envelopes during diagenesis. 

When the metastable aragonite or high Mg calcite o f skeletal grains came into contact 

with undersaturated fluids, it was dissolved out with the micritic envelope remaining to 

define the original shell outline. The molds were filled with sparry calcite cement (Plate 

2.4). Micritization is not widely observed in the Turner Valley Formation, only on the 

periphery of crinoid grains, and also prevented the growth of syntaxial cement on those 

grains.
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3.3 COMPACTION

After deposition of carbonate sediments, various compactional textures and fabrics were 

developed sooner or later due to the overburde.: stresses. Compaction processes and 

products are generally classified into two categories: mechanical (or physical) and 

chemical compaction. The first begins soon after deposition probably just one meter 

deep, while the second probably requires several hundred meters of burial (Choquette and 

James, 1986). There exists abundant evidence that the Turner Valley carbonate sediments 

underwent strong mechanical and chemical compaction during burial.

3.3.1 Mechanical Compaction

Mechanical compaction o f the Turner Valley carbonate sediments not only resulted in 

closer grain packing and dewatering, especially in lime muds, but also porosity loss and 

considerable reduction in sediment thickness, as well as a  preferred orientation of 

elongate bioclasts in grain sediments. It also contributed significantly to the production 

of fractures and the ductile deformation of grains. Some skeletal fragments broke with 

fracture surfaces and broken envelopes can be observed (Plate 3.1). Most pressure- 

welded grains are in direct contact, suggesting no significant cementation before 

mechanical compaction.

Early fractures developed widely in the Turner Valley Formation, probably resulting 

from mechanical compaction or/and structural movement. Fractures are usually filled by 

calcite cement (veins)(Plate 3.2). Generally, the number and size of fractures (veins) 

decrease with increasing depth possibly due to the brittle property of sediments during 

shallow burial.

3.3.2 Chemical Compaction

Chemical compaction is more commonly observed in carbonate sediments of the Turner 

Valley Formation. Various dissolution textures are present. There are numerous 

classifications of chemical-compaction fabrics (Wanless ,1979; Buxton and Sibley, 1981; 

Bathurst, 1987). Three types of pressure dissolution features are identified: (1) fitted 

fabrics; (2) dissolution seams and (3) stylolites.
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Plate 3.1. A broken micrite envelope and interpenetration of crinoid grains.

Plate 3.2. Vein calcite cement is crosscut by stylolites (rilled by black bitumen).
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Fitted Fabrics: They are observed in grainstone lithofacies. Fitted fabrics were created 

by the pressure dissolution of grain-grain contact, and resulted in slight saturated to 

curved to planar contacts between the surfaces of grains. No significant cementation, 

except syntaxial overgrowth in the matrix, had occurred before the development of fitted 

fabrics due to the prevention of cements for pressure dissolution (Bathurst, 1987). 

Dissolution Seams: They are observed in only some wackestones and algal mudstones. 

They are smooth, undulose seams of insoluble residue without distinctive sutures of 

stylolite, and they usually pass around grains instead of crosscutting through them (Plate 

3.3). Dissolution seams possibly formed contemporaneously with fitted fabrics, during 

the same compaction stage, but distributed in different lithofacies. Both of them were 

truncated by later stylolite (II), and another similarity is that both of them have a by

product o f patchy dolomite, which is restricted to the areas of pressure dissolution 

(Wanless, 1979). Patchy dolomite is the earliest dolomitization occurring in the burial 

environment (section 3.7).

Stylolites: They are widely distributed in carbonates of the Turner Valley Formation. 

Stylolites are usually irregular interpenetrating surfaces of two rock units with a sutured 

contact morphology from quite smooth to jagged to pillar and socket in cross-section. 

The amplitude of the suture varies from less than 1 mm to decimeters, and is much 

larger than the diameters of the sediment grains (Plates 2.5 and 3.2).

Most stylolites in the Turner Valley carbonates are parallel to or at moderate angles to 

sedimentary layers, suggesting that stylolites predominately resulted from lithostatic stress 

(Wanless, 1979) or from the effective stress perpendicular to primary layers. Stylolites 

are present in any lithofacies from grainstones to mudstones, more commonly between 

two different lithofacies. The amplitude of stylolite in finer grained lithofacies is smaller 

than in coarse grained lithofacies. The highest amplitude of stylolite usually occurs in 

grainstone lithofacies and between grainstone and packstone lithofacies. Two generations 

of stylolite are observed. Early stylolites (I), with much lower amplitude, were cut 

through and separated by late stylolites (II)(Plate 2.5). Stylolite I is rarely present and 

is accompanied by patchy dolomite, and probably formed with dissolution seams and
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Plate 3.3. Dark dissolution seams and accompanying rhombs of patchy 

dolomite. Coarse grains are calcite skeletal fragments.

Plate 3.4. Core photography of chert nodules and bands. Note the primary 

laminations are still preserved, and are continuous from chert nodules to 

mudstone facies. Scale in cm. Core 12-22, depth 1954 m.
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fitted fabrics at the same time. Stylolite I an., stylilite II transect skeletal grains, 

sedimentary fabrics and many diagenetic fabrics. Stylolite II crosscuts massive dolomite. 

Stylolite II is also usually filled with brown-grey, dark insoluble materials (clays?) and 

organic matter, and is crosscut by megadolomite and late fractures.

3.4 CEMENTATION 

Though cementation is a very important diagenetic process, cements in the Turner 

Valley Formation are not widely distributed, temporally and spatially. Six types of 

cement were observed in the Turner Valley carbonates from early to late stage: (1) 

syntaxial overgrowth rim, (2) bladed prismatic calcite cement, (3) blocky calcite cement, 

(4) equant calcite cement, (5) coarse mosaic calcite spar, and (6) poikilotopic calcite 

cement. All these calcite cements formed during relatively early diagenetic stages, either 

in a marine environment or in early burial stages. AH of them have been replaced 

partially by dolomites, diagenetic cherts and anhydrite. All types of cement are non- 

ferroan and composed entirely o f diagenetic low-Mg calcite. Types (1) and (6) are 

usually observed in calcite grainstones; whereas types (2) to (5) are usually distributed 

in strongly dolomitized limestones, including microdolomite and massive dolomite.

3.4.1 Syntaxial Overgrowth Rim

This type of cement is usually a monocrystalline syntaxial overgrowth on echinoderm 

fragments (Plate 2.2). The syntaxial overgrowth rim and its host grain have a unit 

extinction. Rim crystals tend to be large and poikilotopically engulf surrounding grains. 

This type of cement is predominately developed on crinoid grains and also on other 

skeletal grains (e.g., bryozoans), but does net occur around those grains displaying 

peripheral micrite rims (envelopes). Well-developed cleavage, planes and twin zones are 

of optical continuity from host grains to rim cement. The presence of syntaxial 

overgrowth rims prevented mechanical compaction.

3.4.2 Vein Calcite Cement

Volumetrically, vein calcite cement is the most abundant cement type in the Turner
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Valley Formation. It is a characteristic fracture-filling cement (Plate 3.2), where the 

fractures probably developed as a result of early compaction and/or structural stress due 

to basin sedimentary tilting and rising (Mundy et al., 1992). These fractures are now 

filled with calcite crystals, forming veins. Vein cement consists entirely of non-ferroan, 

equant calcite, and has a typical drusy fabric of increasing crystal size towards the center 

o f the pore (Plate 3.2). Most calcite veins usually occur in strongly dolomitized 

carbonates and are absent in limestones. Stratigraphically, they are usually present in the 

upper parts o f the formation, decreasing in abundance with increasing depth.

3.4.3 Bladed Prismatic Calcite

This type of cement consists of medium, elongate, scalenohedral crystals, observed 

growing directly on carbonate groundmass (e.g., microdolomite crystals) in cavities. 

Calcite crystals have various sizes, varying from 50 to 300 /xm long with prismatic 

terminations. Bladed prismatic calcite crystals are succeeded by coarse calcite spar 

toward the center of the cavity. Such calcite could be an early burial cement (Choquette 

and James, 1987); some workers have proposed that its origin is associated with the 

mixing zone of freshwater and seawater (e.g., Sailer, 1985).

3.4.4 Blocky Calcite Cement

This cement has crystals of about 0.5 to 1 mm in size. It usually fills the pores left by 

the dissolution of skeletal grains in strongly dolomitized wackestones and packstones. Its 

crystals are usually clean and inclusion-free; euhedral pyrite crystals are often present 

around the cement. Blocky calcite cement is crosscut by equant calcite cement veins.

3.4.5 Coarse Calcite Spar

This type o f cement usually consists o f coarse, plane-sided equant crystals ranging from 

0.5 to 3 mm in size. Coarse calcite spar usually succeeds bladed prismatic calcite cement 

in the cavities o f microdolomite and dolomitized packstones or grainstones with a  mosaic 

texture. It shows a drusy texture of increasing crystal size toward the center of the 

cavity.
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3.4.6 Poikilotopic Calcite Cement 

This type of cement occurs in grainstone and packstone facies. It is composed of coarse 

crystals, up to a few mm in diameter, and usually engulfs several skeletal grains. It has 

tightly cemented skeletal grains and their fragments. This type of cement probably 

formed after syntaxial rim cement, and simultaneously with equant calcite and coarse 

mosaic spar cements. Its presence might have prevented some later diagenetic events 

because well-developed poikilotopic calcite cement in grainstones and oolites, anhydrite 

and dolomite are rarely present.

3.5 SILICIFICATION

Multiple stages of silicification occur widely in carbonates of the Turner Valley 

Formation, though small in volume. Cherts are present as nodules, irregular masses, 

elongate parallel to bedding and as nodule bands parallel to bedding with various 

thickness (Plate 3.4). Silicification occurs as both cementation and replacement from 

mudstone facies to grainstone facies.

3.5.1 Petrography of Silicification 

Four petrographic types of chert have been identified: (1) length-slow chalcedony, (2) 

megaquartz, (3) microquartz, and (4) length-fast chalcedony and macroquartz.

Length-slow Chalcedony 

Length-slow chalcedony is present as a fibrous fabric. Bundles o f fibres (or quartz 

crystals) commonly grew radiating from a single point or crystal. This fabric occurs in 

chert nodules replacing primary evaporites (anhydrite), and coexists with megaquartz. 

Length-slow chalcedony has been used as evidence of "vanished evaporites" (e.g., Folk 

and Pittman, 1971). In the Turner Valley Formation, primary evaporites (e.g., anhydrite) 

are present, only partially replaced by cherts.

M egaauartz

This type o f silica usually occurs in the voids of algal mudstone-microcrystalline
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dolomite (Plate 3.5). Its crystal size ranges from 0.2 to 2 mm and most crystals are 

around 0.5 mm. Single megaquartz crystals often show uniform extinction with euhedral 

termination. Megaquartz has a replacive origin, usually occurring along the boundaries 

between microdolomite and primary anhydrite (or poikilotopic calcite cement), and 

replaces anhydrite and calcite cement. It always contains anhydrite and/or calcite 

inclusions. Some crystals of megaquartz were dissolved later, but the pores still retain 

their molds.

Microguartz
Volumetrically, microquartz is the most abundant type of chert in the Turner Valley 

Formation. It occurs most commonly in beds of packstones and grainstones as a variety 

of grey, brown, or white nodules, lenses, and stringes. In some thin sections, 

microquartz crystals present tightly together in nodules and parallel to the sedimentary 

bedding, providing the rocks with a distinctive banded appearance.

Microquartz consists of equant, anhedral microcrystals (5-20 n m) with undolose 

extinction. Although it occurs mostly as a replacement o f bioclasts, it is also occasionally 

present as a  replacement of fine matrix. Sometimes, microquartz occurs as isopachous 

rims of megaquartz (Plate 3.5), and often grades to length-fast chalcedony. Microquartz 

has a typical replacive fabric. It usually partially and selectively replaces skeletal 

fragments, whereas the primary sedimentary fabrics, such as cross-bedding, fine 

laminations and even the internal skeletal textures, are fairly well preserved (Plate 3.6). 

Patchy rhombic dolomite is often floating in chert nodules as a  relict o f chert 

replacement, suggesting patchy dolomite formed before microquartz. However, 

microquartz was replaced or/and crosscut by massive dolomite (Plate 3.7).

Leneth-fast Chalcedony and M acroquartz

Length-fast chalcedony is also one of fibrous fabrics. This type of chert usually coexists 

with microquartz, but is present as a cement in cavities. It often occurs as well-arranged 

spherulitic structures o f length-fast fabrics (usually 0.1-0.3 mm in length), perpendicular
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Plate 3.5. Megaquartz (grey) replaces coarse calcite spars (dark red) and 

microdolomite (fine grains). Note microquartz crystals are growing around 

megaquartz crystals.

P late 3.6. Microquartz replaces skeletal grains. The internal textures of

grains are still partially preserved. A stylolite goes around the chert nodule.
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Rate 3.7. Massive dolomite replaces and crosscuts microquartz.

Rate 3.8. Length-fast chalcedony (at the rims of cavity) and macroquartz 

(center), and microquartz (massground).
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to cavity walls. Bundles of fabrics commonly radiate from a single point of the substrate 

from which they grew (Plate 3.8). They often consist of consecutive layers in one single 

cavity, where the boundary between the layers is usually sharp and marked by a thin 

black band under crossed-nicols. From the characteristics above, it is obvious that the 

radiating pattern of chalcedony typically occurs as a void-filling cement, since it is never 

as pseudomorphic skeletal grains and calcite cements, never interrupts carbonate fabrics, 

and never contains undigested carbonate inclusions.

Macroquartz is rare, but occurs as both a replacement o f skeletal grains and a cement, 

either coexists with microquartz or with length-fast chalcedony. Macroquartz exhibits 

equant, anhedral crystals varying from 0.05 - 0.2 mm.

3.5.2 Source of Silica

The source of silica nodules is often explained by the redistribution of biogenic silica, 

which is contained in carbonate sediments, during diagenesis. Sponge spicules are a 

widely quoted source of silica (e.g., Meyers, 1977). However, sponge spicules have not 

been seen in thin sections in the Turner Valley carbonates, or are very rare if any. 

Therefore, this source for silica is unlikely. One possible silica source was attributed to 

the post-Mississippian disconformity. The disconformity may act as a feeder for silica 

fluids. Knauth (1979) suggested that meteoric water percolated and leached a 

considerable thickness of unlithified source sediment which may be devoid of any silica. 

Moreover, the distribution of chert in the Turner Valley Formation shows an increase 

upward, and the overlying strata, including the Mount Head and Etherington Formations, 

have much more silica impurities in carbonates (Ng and Jones, 1989). Hence the Banff 

and Pekisko Formations could not be the source o f silica, though they have silica-rich 

nodules. Another alternative source of silica from the dissolution of detrital silica is 

possible. Detrital silica is seen in the Turner Valley Formation. It usually occurs in fine 

grained packstones and mudstones, up to 5% locally, but is less prominent in 

grainstones. Detrital silica has been observed along late stylolites, probably as the 

evidence of pressure dissolution. Most detrital silica has etched outlines.
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Plate 3.9. Core photography of dark microdolomite and white, primary 

anhydrite, scale in cm. Core 12-22, 1905 m.

Plate 3.10. Core photography of burial anhydrite nodules are distributed 

along fractures. Scale in cm. Core 6-7, depth 2011 m.
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3.5.3 Timing of Silicification 

It is difficult to date the silicification in the Turner Valley Formation with the limited 

information. However, a lot of petrographic evidence indicates that silicification occurred 

relatively early in the diagenetic history of the carbonate sediments. Megaquartz and 

length-slow chalcedony formed at an early stage of diagenesis, because they usually 

coexist with microdolomite in sabkha lithofacies, and replace primary anhydrite and early 

calcite cement. Megaquartz also acted as a  nuclei for microquartz, microquartz grew 

around the crystals of megaquartz. In addition, both o f these were replaced by pervasive 

matrix dolomite. Microquartz is usually present in skeletal carbonate as both a 

replacement and a cement. Careful observations indicate that microquartz does not 

obliterate preexisting carbonate depositional or diagenetic features. Chertification in fact 

freezes certain fabrics of carbonate depositional and diagenetic features, such as internal 

skeletal textures, calcite cementation and compaction, thereby preserving these features 

from further modification by late diagenetic events (Meyers, 1977). Mechanical 

compaction is a  common phenomenon in the Turner Valley carbonates as discussed 

earlier in this chapter, but intense compaction is rarely seen in silicificated skeletal 

carbonates. However, there is also some degree of compaction such as orientation of 

elongated skeletal grains and grain interpenetration. Furthermore, stylolites are common 

in the Turner Valley Formation, but were rarely developed within chertified skeletal 

carbonates, whereas they are relatively common outside chert nodules rather than 

crosscut the nodules. In addition, pervasive matrix dolomite crosscuts through and/or 

replaces microquartz. However, patchy dolomite, resulting from early compaction, often 

floats inside chert nodules or layers with etched rims (outlines), possibly was modified 

during selective silicification. Therefore, all these features prove that cherts occurred 

after early compaction, patchy dolomite before intense compaction, massive dolomite.

3.6 ANHYDRITIZATION

Anhydritization is one of the important diagenetic processes in the Turner Valley 

Formation in spite o f the fact that less attention has been devoted to it in previous 

studies. Anhydritization has been found in all carbonate lithofacies of the Turner Valley
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Formation. There are two generations of anhydrite: primary anhydrite and secondary 

anhydrite. The primary anhydrite is small in volume and occurs locally, whereas 

secondary anhydrite has a much larger volume and a relatively wide distribution, and 

formed much later during burial diagenesis.

3.6.1 Prim ary Anhydritization

Primary anhydrite here means that anhydrite precipitated in a  sedimentary basin with 

carbonate sediments. Although it is possible that the primary sulfate was gypsum which 

was transformed to anhydrite during increasing burial, the origin of sulfate (gypsum or 

anhydrite) resulted from primary deposition. Primary anhydrite occurs in the "Middle 

Dense" member and the "Upper Porous" member of the formation. It often consists of 

fine, anhedral anhydrite, occurring as nodules, or filling the voids in microdolomite 

(Plate 3.9). Some anhydrite crystals are in the shape of laths, probably preserved the 

shape of the replaced gypsum, but most of them have a fine, elongate shape. Fine

grained anhydrite has a typical "chicken-wire" texture (Tucker et al., 1990). Megaquartz 

and/or poikilotopic calcite cement usually occupy the boundary between primary 

anhydrite and microdolomite, the former two replace and include the latter two.

3.6.2 Secondary Anhydrite

Secondary anhydrite is a diagenetic product, precipitated after the sediments were 

buried, and is also called burial anhydrite in this study. Secondary anhydrite is much 

more important and occurs widely compared with primary anhydrite. It occurs as both 

nodules and scattered replacements (Plate 3.10). It appears milk-white in hand 

specimens. Crystals are of various sizes from fine lenses to coarse laths (up to 1 mm). 

Scattered anhydrite occludes voids, occupies the space between pervasive matrix 

dolomite, or replaces early calcite cements and skeletal fragments. Nodules usually 

distribute along fracture n  (Plate 3.11). The boundaries between anhydrite nodules and 

carbonate hosts are either sharp or gradational. Anhydrite nodules have some similarities 

to sabkha nodules described by some workers (e.g., Buller, 1969). However, the burial 

anhydrite nodules of the Turner Valley Formation have much different characteristics
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Plate 3.11. Crystals of burial anhydrite are distributed along firactures. 

Note massive dolomite replaces and crosscuts the anhydriie vein.

Plate 3.12. Back-scattered electron micrography shows euhedral crystals 

(rhombs) of microdolomite (right). The grey, coarse grained grains are 

detrital quartz (left).
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which reflect a burial origin: (1) they occur in different carbonate facies from mudstone, 

wackestone to packstone and grainstone, (2) they replaced host limestone, calcite 

cements, and even patchy dolomite, (3) they often distribute along fractures and 

stylolites. From these features, secondary anhydrite could be distinguished from primary 

anhydrite.

3.6.3 Source and Timing of Secondary Anhydrite

The Mississippian succession was deposited in shallowing-up marine environments 

varying from normal marine to restricted lagoon to sabkha facies as discussed in chapter

II. Although primary anhydrite is very rare in the Turner Valley Formation, the 

overlying Mount Head Formation has abundant primary sulfate which provides the 

possibility for a lot of late-diagenetic brines to develop. This is evident especially along 

the post-Mississippian disconformity, where there was a recharge o f meteoric water, 

which percolated and leached ancient rocks including evaporates o f the Mount Head 

Formation, the fluids flowed down through firactures or other permeable channels.

Although it is not easy to date the time of burial anhydritization, the petrographic study 

can provide some useful information. Much anhydrite was observed to have not only 

replaced skeletal grains, and calcite cements, but also to crosscut early compacdonal 

features (e.g., fitted fabrics) and filled fracture II. In addition, burial anhydrite usually 

coexists with pervasive matrix dolomite, and there is a positive correlation o f anhydrite 

aboudance related to massive dolomite, either in partially dolomitized grainstones or in 

completely dolomitized mudstones. On the one hand, anhydrite was replaced or crosscut 

by massive dolomite; on the other hand, patchy dolomite and even pervasive matrix 

dolomite rims are found corroded and modified by anhydrite. Meanwhile, anhydrite filled 

stylolite II. Hence, burial anhydrite possibly formed in two major stages-predated and 

postdated massive dolomite, with the same crystal size and texture. In addition, anhydrite 

was also crosscut and replaced by megadolomite and moldic dolomite or as their 

inclusions. Moreover, burial anhydrite and matrix dolomite have similar ^S r/^S r values. 

All these features prove that anhydrite precipitated in relatively late diagenetic stages, 

probably after patchy dolomite and before coarse dolomidzation.
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3.7 DOLOMITIZATION

3.7.1 Petrography

Dolomitization is the most important diagenetic process during the diagenetic history 

of the Turner Valley Formation. Almost all limestones in three cores of the study area 

are partially to completely dolomitized. Since dolomitization has usually resulted in 

higher porosity and permeability than undolomitized limestone, prolific hydrocarbon 

reservoirs are related to dolomitized carbonates in the Turner Valley carbonates. Hence, 

an investigation of the cause and distribution of dolomitization has not only academic but 

also economic significance. This part presents a detailed petrographic description of 

dolomitization in the Turner Valley Formation. The classification of dolomite described 

here is based on the texture, abundance, distribution and geochemistry o f dolomite. Four 

types (or generations) of dolomite have been identified: microdolomite, patchy dolomite, 

pervasive matrix dolomite, and megadolomite. Though all types o f dolomite are 

described as having formed in different geological times, the replacement and formation 

of dolomite were probably more of a continuum and overlapping. Each type of dolomite 

has its own limestone replacive precursor, and early dolomites have been modified by 

relatively late dolomitization.

Microdolomite

Microdolomite consists of subhedral to euhedral crystals of mosaic texture. Its crystals 

are very small varying from 4 to 10 pm in size (Plate 3.12). Microdolomite usually 

shows a grey, brown, and even dark colour, and exhibits dull colour under 

cathodoluminescence. Under SEM microdolomite crystals show euhedral rhombs, while 

some crystals have developed stepped crystal surfaces, whereas the relatively coarser 

dolomite grains (10-50 pm) disseminated in microdolomite are characterized by one or 

two fluorescence syntaxial overgrowth rims. They may have resulted from the 

recrystallization and overgrowth of microdolomite crystals, and they are called enlarged 

grains here (Plate 3.13). The rims and their host crystals are in optical continuity. Some 

enlarged grains are homogeneous under light microscopes, but their cloudy cores and 

clear rims were revealed under fluorescence. I f  two rims are present, the internal rim is
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clear whereas the external rim is usually cloudy. The shape of enlarged grains depends 

on the shape o f core crystals, if the core crystals are rhombs, the enlarged grains are also 

rhombs. Some rims are not symmetric in some cases, and even only partially developed. 

In addition, coarse burial calcite spar in microdolomite usually engulfs some 

microcrystals as inclusions, whereas the microdolomite with rims (enlarged gnias) 

clearly replaces and crosscuts the calcite cement, suggesting the rims formed after 

calcite cementation. Microdolomite occurs only in sabkha lithofacies, where no skeletal 

grains were found, and only some algae were present. Microdolomite usually coexists 

with primary anhydrite, which has a typical chicken-wire texture. This lithofacies is very 

thin (usually <  2 m), interbedded with wackestones in the middle and upper parts of 

Turner Valley Formation, and absent at one of three wells in Quirk Creek (14-12). Both 

microdolomite and primary anhydrite have relatively low *7Sr/MSr (0.7077) values, which 

are similar to that of Mississippian seawater (0.7076)(Burke et al., 1982). Therefore, 

microdolomite may have formed penecontemporaneously in a sabkha environment.

Patchv Dolomite

Patchy dolomite is widespread throughout the formation, but small in volume (5-15%). 

Patchy dolomite is easily observed in slightly dolomitized grainstone facies and packs Vine 

facies. It is often disseminated between skeletal giains and in the centers o f grains as 

floating single-rhomb patches (Plate 2.2 and Plate 2.3), whereas local concentrations of 

dolomite crystals along fractures, compaction fabrics, and/ or in a fine matrix between 

grains also exhibit larger multiple-crystal patches with subhedral to euhedral mosaic 

texture. Dolomite crystals have a wide range in size from 20 pm to 200 pm, usually 

about 50 pm. Patchy dolomite is clear, non-ferroan with a dull cathodoluminescence 

colour. It also exhibits two to three layers of syntaxial overgrowth in some crystals 

(Plate 3.14). Like microdolomite, if  two rims are present on one crystal, the internal rim 

is clear, and the external rim is cloudy. I f  three rims are present, the innermost and 

outermost rims are clear, whereas the middle one is cloudy. Some patchy dolomite 

crystals exhibit only one clear-rim and cloud-center under fluorescent microscope. All
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H ate 3.13. Back-scattered electron micrography displays that a enlarged- 

grain (center) has a  cloudy center and a clear rim. Note microporosity 

has been developed inside crystals o f microdolomite.

Plate 3.14. Overgrowth rims of patchy dolomite are seen under fluorescence.
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these rims represent that patchy dolomite underwent the processes of crystal-enlargement 

during the later stages of dolomitization. Patchy dolomite is often observed to occur 

along fitted fabrics, dissolution seams and stylolite I, and also crosscuts stylolite I. In 

addition, patchy dolomite was engulfed and corroded by microquartz and burial 

anhydrite. Therefore, from the features discussed above, patchy dolomite could have 

been formed during relatively early chemical-compaction.

Pervasive M atrix (Massive) Dolomite 

Pervasive matrix dolomite is the most abundant type o f dolomite (80% in volume). It 

consists of anhedral to euhedral, porous and dense mosaic textures (Plate 2 .6  and Plate 

3.15). Porous, pervasive, massive dolomite has the highest intercrystalline and moldic 

porosity. Matrix dolomite is destructive and has strongly modified or obliterated earlier 

diagenetic fabrics, and dolomitized not only relatively fine matrix but also skeletal grains. 

Matrix dolomite has a wide range in size from 20 to 300 /*m enlarging from fine- to 

coarse-grained facies. Pervasive matrix dolomite is non-ferroan and has brown to dull 

cathodoluminescence colour without fine zonation. Some crystals have clear rims of 

fluorescence. Most crystals are clear, limpid rhombs. Pervasive dolomite occurs in every 

lithofacies, usually dolomitizing limestones with varieous proportion o f dolomite from 

20% to 100%. In mudstone and wackestone lithofacies, the proportion of dolomite is 

usually higher (80-100%). In packstones and grainstones, most limestones have been 

dolomitized from 20 to 80%, some have been 100% dolomitized, especially in well 14-

12. In completely dolomitized limestones, the previous sedimentary and diagenetic fabrics 

have been obliterated. However, the ghosts o f skeletal grains (e.g., crinoids) can still be 

observed in some thin sections under fluorescence microscope. Burial anhydrite usually 

coexists with massive dolomite, replaced calcite cements, skeletal grains; and even 

engulfed massive dolomite, while massive dolomite also crosscuts anhydrite. Pervasive 

matrix dolomite replaced all calcite cements and cherts, but was crosscut by stylolite II, 

which is partially filled by bitumen, anhydrite, and was also replaced by megadolomite.
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Meeadolomite

Megadolomite consists of very coarse rhombic dolomite and anhedral, coarse crystals 

of dolomite (Plate 3.16). Coarse, euhedral rhombs have an average size of 1 mm, 

ranging from 0.3 to 3 mm. Coarse rhombs usually occur in voids and as patches in 

matrix dolomite similar to patchy dolomite occurs in skeletal limestones (see patchy 

dolomite). Anhedral crystals of dolomite are the completely dolomitized crinoids. 

Crinoids were dolomitized as single crystal dolomite, the shape and size o f the crinoid 

is still preserved, but partially stepped crystal surfaces have been developed. Coarse 

rhombic dolomite and anhedral crystals o f dolomite are usually present together with 

small volume ( < 5  %).  Both of them have relatively small dolomite inclusions and 

crosscut stylolite n, and occur mainly in massive dolomitized packstones and grainstones. 

Megadolomite is non-ferroan and have a brown CL colour, and some coarse rhombs 

close to voids have a bright orange colour. Megadolomite obviously formed in the late 

burial stage because they replaced massive dolomite and crosscut stylolite II.

3.7.2 Spatial D istribution of Dolomite

The proportion of dolomite in Turner Valley carbonates changes vertically and laterally. 

An increase in dolomite proportion horizontally from west to east towards the paleocoast 

was noted by Stein (1977). A decrease in dolomite proportion with increasing depth is 

observed from the observation and evalution of cores and of thin sections in this study.

3.8 FRACTURING

Various fractures are observed in the Turner Valley carbonates. Three generations of 

fracture are identified. Fracture I is fine in scale with a  width varying from 0.S to 3 mm, 

and extends no longer than 30 mm. Fracture I is usually at a  vertical orientation to 

bedding, completely sealed by calcite cement as calcite veins (Plate 3.2). Fracture I (or 

veins) has been transected by late stylolite and disappeared in pervasive matrix dolomite. 

Fracture n  is relatively wider than fracture I. It is often oblique to bedding at some 

degrees. Fracture II is filled partially by burial anhydrite (Plate 3.11). Fracture III has 

various widths and lengths, in general, wider and much longer than fracture I and

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Plate 3.15. Massive dolomite with subhedral to euhedral crystals.

Note crystals protruding into pores are cleaner and larger than the 

interlocking crystals o f  massground. Perfect vuggy and intercrystalline 

porosities are presented.

Plate 3.16. Megadolomite replaces burial anhydrite (red ones).
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fracture II. It also has various relations with bedding from parallel, inclined to 

perpendicular. Fracture III has not been filled by anything. It transects stylolite II and 

megadolomite.

The development of fractures in the Turner Valley Formation occurred ip different 

diagenetic stages. Based on petrographic relationships and paragenetic sequence, fracture 

I was probably caused by early compaction or basin tilting (Mundy et al., 1992). 

Fracture II might have resulted from later compaction or the basin tilting and rising, and 

probably formed with massive dolomite. Fracture III formed in a very late stage, 

probably with the formation of folding and faulting in late Cretaceous.

Although quantitatively unimportant in the Turner Valley Formation, fractures have 

possibly influenced the development o f the reservoir in two ways. The first is to act as 

channels to transport various fluids, which increase the permeability considerably; and 

the second is to act directly as a trap for hydrocarbons (Stein, 1977).

3.9 DISSOLUTION

Widespread dissolution is observed in the Turner Valley carbonates. The dissolved 

materials are usually CaC03 components. They were aragonite, high Mg calcite as 

skeletal grains, matrix and calcite cements in the Turner Valley carbonates. During late 

stages o f diagenesis, Calcitic components became undersaturated relative to diagenetic 

fluids (e.g., dolomitization fluids) which are only saturated with dolomite or/and 

anhydrite. Dissolution probably occurred in three different stages. The first probably 

occurred in the early burial environment where some skeletal fragments consisting of 

metastable carbonate minerals were dissolved and then filled by calcite cements. The 

second probably occurred early or/and during pervasive matrix dolomitization due to the 

intervening of enormous amounts of dolomitization fluids (Fate 3.15). The last stage of 

dissolution occurred very late, not only were calcite components and burial anhydrite 

dissolved, but also some dolomites were partially dissolved.

3.10 GEOCHEMISTRY O F THE TURNER VALLEY FORMATION

In conjunction with petrographic studies, geochemical techniques were utilized to
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further constraint digenetic environments o f the Turner Valley carbonates. These 

techniques are: (1) all thin sections were stained as discussed in chapter I to distinguish 

dolomite from calcite, and identify rocks with or without ferroan dolomite and calcite;

(2) selected thin sections were studied for fluid inclusions; (3) all thin sections were 

examined under cathodoluminescene (CL) and fluorescence devices to look for any fabric 

and compositional variations; (4) various types o f dolomite and calcite cements were 

chemically analyzed for major, minor and trace elements and isotopes, and the electron 

microprobe was employed to selectively analyze major and minor elements of different 

types of dolomite. Stained thin sections show that colourless dolomite is easily 

distinguished from pink to red colour-stained calcite; however, neither ferroan dolomite 

nor ferroan calcite has been observed in any thin section. Perhaps, calcite and dolomite 

components were formed either in surface oxidizing conditions or in deep burial reducing 

environments, no abundant Fe component is present, perhaps the fluids for whole 

diagenesis o f the Turner Valley Formation are Fe-depleted, and perhaps all diagenetic 

fluids have similar sources. They are discussed in details in following parts.

3.10.1 Fluid Inclusions

Fluid inclusions have been widely used in geology, particularly in igneous, 

metamorphic and economic geologic studies, where temperature o f formation and fluid 

composition are usually o f importance, but have only recently been used in carbonate 

diagenetic studies. Calcite cements, dolomite cements and replacive dolomites often 

entrap inclusions of fluids (from which the crystals precipitated) at lattice defects or 

irregularities. This type of fluid inclusion is called a primary fluid inclusion. Secondary 

fluid inclusions are those formed as a results of fractures o r crystal dislocation affecting 

the crystal after it has stopped growing (Roedder, 1979). Temperature and salinity o f 

precipitating crystals can be measured from fluid inclusions. If  fluid inclusions are 

trapped as a single phase (e.g., one liquid phase) at a relatively low temperature of less 

than S0°C (Roedder, 1979), the inclusions would remain as single-phase fluid inclusions; 

whereas if  they are trapped as a single phase under elevated temperature (>50°C), as the 

host mineral and inclusion cool, they would separate into two phases: a liquid and
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vapour. The homogenization temperature of formation of the crystal containing a  two- 

phase fluid inclusion can be determined by heating up the sample until the vapour bubble 

disappears.

The temperatures of homogenization of inclusions in carbonates and their impurities of 

the Turner Valley Formation were measured and are listed in Table 3.1.

Table 3.1. Inclusions and homogenized temperatures of two-phase fluid-inclusion.

Mineral Phase Inclusions Temperature Range 

<°C)

Temperature Average

(°C)

Primary anhydrite None ----

Calcite cements One Phase, Rare ----

Cherts Very Rare ----

Patchy Dolomite Very Rare ----

Massive Dolomite One Phase ----

Megadolomite Single- and Two-phase 103-129 n=6 116

Secondary Anhydrite Single-and Two-phase 159-260 n=5 221

From Table 3.1, two very different temperature groups can be observed. All calcite 

cements, all cherts, patchy dolomite and even pervasive matrix dolomite formed at 

relatively low temperatures (<S0°C), whereas burial anhydrite and megadolomite formed 

at higher temperatures. However, the petrographic and isotopic results demonstrate that 

burial anhydritization occurred with matrix dolomitization, although lasted longer; and 

megadolomite has slightly negative 5180  values relative to matrix dolomite. Hence it is 

possible for anhydrite and megadolomite to have formed at higher temperatures than 

massive dolomite (i.e., >  50°C). However, no hydrothermal lead-zinc mineralization has 

been reported from the Turner Valley Formation. The temperatures o f anhydrite and 

inegadolomite from fluid inclusions could be higher than that they should be if the 

following possibilities exist: (1) Some secondary fluid inclusions were measured during
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measuring, especially in anhydrite. (2) The volume of the cavity probably changed (e.g., 

dissolution) significantly. (3) The fluid inclusions stretched or leaked. (4) The fluids in 

the inclusions probably contain some impurities besides water (Moore et al. 1989). 

Anyway, some conclusions can still be achieved from the results o f fluid inclusions. 

Microdolomite, calcite cements, cherts, and patchy dolomite formed at lower 

temperatures and probably in relatively early diagenetic stages. Pervasive matrix dolomite 

also formed at relatively low temperatures. Burial anhydrite and megadolomite probably 

formed at higher temperatures and later diagenetic stages.

In addition, if carbonates have hydrocarbon inclusions, the inclusions can be recognized 

by their fluorescence under fluorescence microscopes (Burruss et al., 198S). 

Megadolomite crystals of the Turner Valley Formation include hydrocarbon inclusions, 

suggesting that hydrocarbon production and migration could have occurred during the 

crystallization of megadolomite.

3.10.2 Cathodoluminescence (CL) Petrography
Cathodoluminescence (CL) has been widely used to examine the various luminescent 

patterns and fabrics of carbonates, which are invisible in ordinary light microscopes. 

Luminescence involves adsorption of radiation followed by instantaneous emission of 

visible light. CL is produced by trace elements incorporated during mineral precipitation 

(Machel, 1985). With CL, the luminescence is mostly a  function of Fe?+ and Mn2+ 

contents and also the Fe/Mn ratios, with Mn2+ being the activator and Fe2+ the inhibitor, 

but other elements are involved such as Pb2+ and rare earth (activators), and Ni2+ and 

Co2+ (quenchers) (Machel, 1985). Dolomite requires higher Mn concentrations than 

calcite for similar luminescent intensities because some Mn ions enter Mg sites, thus 

decreasing their efficiency as activators.

The redox conditions, temperature and fluid chemistry during carbonate precipitation 

can be inferred from their luminescent patterns, because they are related to the relative 

abundance o f activator and quencher elements in minerals. Therefore, the typical non- 

luminescent, dull luminescent, and bright luminescent in different zones or minerals are 

believed to reflect a continual decrease in Eh, varying gradually from oxidizing to
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reducing conditions with increasing burial (Machel, 1985). In the Turner Valley 

carbonates and impurities (cherts and anhydrites), three CL features were observed: (1) 

Non-Luminescence. (2) Dull to brown orange. (3) Brown to slightly bright orange. 

Non-Luminescence: All anhydrites, gypsums and various types o f chert exhibit non

luminescence under CL, and all calcite cements and undolomitized calcite muds and 

skeletal grains show this type of colour, although they have different origins and formed 

in different stages.

Dull to  brow n orange: Most dolomites have this type o f colour. Microdolomite, patchy 

dolomite and some pervasive matrix dolomite have a  dull CL colour. Some pervasive 

matrix dolomite and most coarse and crinoid-moldic dolomite have a brown CL colour. 

Brown to  slightly bright orange: This colour is rare, and is only found in the rims of 

some megadolomite crystals abut to voids. The rims o f megadolomite crystals probably 

formed as cements.

Although different CL colours of diagenetic component are identified, it is probably 

improper to use different CL colours to divide various environments which resulted in 

different Fe, Mn contents and their ratios in a whole iron- and manganese-depleted 

setting such as in the Turner Valley carbonates, and it is hard to detect any compositional 

variation. However, fluorescence in this study can distinguish the rims of dolomite, and 

the ghosts of primary skeletal grains which were replaced by pervasive matrix dolomite 

as discussed in detail as follows.

3.10.3 Fluorescence Stratigraphy
Fluorescence has been introduced as a complementary technique to 

cathodoluminescence, first used in the studies o f coal and fluid inclusions in carbonates. 

Fluorescence may show similar features as CL, but not necessarily, nor do they produce 

comparable results (Dravis and Yurewicz, 1985). The factors that cause fluorescence are 

not yet well understood. Organic components are believed to be the primary factor in 

carbonate rocks (Dravis and Yurewicz, 1985). Trace elements may be another possible 

factor.

In this study, a  white card, inserted between the transmitted light and the thin section,
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is used in the fluorescence microscope to detect microfabrics and organic matter, 

effectively sometimes, as suggested by Folk (1987). To reveal the diagenetic fabrics and 

porosity of the Turner Valley carbonates, fluorescence is more helpful than CL. Some 

important diagenetic phenomena were detected under fluorescence microscopy. ( 1) 

Diagenetic rims (or zones) on microdolomite, patchy dolomite and even pervasive matrix 

dolomite are identified, which probably resulted from compositional variations of 

dolomitization fluids during water-rock interaction, or multiple stages o f dolomitization 

occurred. (2) Skeletal ghosts that have been overprinted by matrix dolomite are revealed.

(3) Hydrocarbon inclusions are detected in dolomite crystals. (4) The distribution and 

evolution of macro- and micro-porosity are observed. All those mentioned above are 

discussed in detail in different parts of this chapter.

3.10.4 Mqjor, Minor, and Trace Elements
3.10.4.1 Introduction

Forty-four samples representing different calcite and dolomite components were 

analyzed for major, minor and trace elements. Analytical procedures are discussed in 

chapter I and the results are listed in Appendix (I). Minor and trace elements are found 

widely in natural calcite and dolomite. They can be incorporated into carbonate minerals 

in the following ways (Veizer, 1983): (1) substitute for Ca2+ in the crystal lattice; (2) 

occur interstitially between lattice planes; (3) occupy defected-lattice positions; (4) be 

absorbed due to remanent ionic charges; (5) be present as inclusions. At present, when 

trace element analysis is utilized as a diagenetic tool, only (1) is considered; the rest are 

usually less significant in volume, less understood and out o f  control.

The amount of a trace element to be incorporated into a CaC03 lattice and dolomite is 

controlled by the distribution coefficient (D) between crystals and solution at complete 

equilibrium. When D >  1, the precipitated crystal will contain higher trace element 

concentrations than solutions from which the crystal precipitated. When D <  1, the 

crystal will have more depleted trace element concentration than the solutions. In general, 

Mg, Na and Sr have D values much less than 1, and Fe, Mn have D values larger than 

1 (Veizer, 1983). Therefore, during diagenetic processes, trace elements o f D >  1
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preferably incorporate into crystals, hence recrystallization will lead to Mg, Na, Sr <D 

<  1) depletion, whereas Fe and Mn (D >  1) enrichment will occur (Veizer, 1983). 

Similarly, during the processes o f water-rock interaction, trace elements, such as Mg, 

Na and Sr with D values less than 1 must increase downflow of diagenetic fluids in 

rocks, whereas Mn and Fe must decrease if the diagenetic fluid composition is constant 

and the flow direction is linear. From this point, the direction o f diagenetic fluids could 

be inferred based on the spatial distribution of trace elements in rocks (Veizer, 1983).

3.10.4.2 Calcium and Magnesium

The amount o f the Calcium carbonate often changes relative to the o f the Magnesium 

carbonate in natural dolomite. Dolomite with 50 mol % of CaCOj and MgCOj is thought 

as a  stoichiometric and possible ordered dolomite mineral. Naturally, dolomites are often 

Mg-depleted (less than 50 mol %) to some degree. Strongly Mg-depleted and poorly- 

ordered dolomite is called protodolomite (Goldsmith and Graf, 1958a in Tucker and 

Wright, 1990), which is a  metastable dolomite. In modem shallow marine environments, 

metastable carbonate minerals are dominated by Mg-calcite (Mg-rich), aragonite (Sr- 

rich), and protodolomite, if  any, in evaporative environments. Stabilization of these 

metastable minerals to diagenetic calcite and dolomite involves a major reapportionment 

(partition) o f these elements between the new diagenetic carbonates and the fluids.

In the Turner Valley Formation, undolomitized calcitic crinoids and all calcite cements 

usually have Mg lower than 1 mol percent, suggesting that they underwent stabilization 

or/and formed as diagenetic calcites. Various types of dolomite have different Mg 

contents (Table 3.2). Microdolomite is not stoichiometric with a CaC 03 mean o f 55.2 

mol%. Patchy dolomite is also not stoichiometric (56.9 mol% CaC03). Missive dolomite 

has a C aC 03 mean of around 52.3 mol%, hence, massive dolomite is relatively 

stoichiometric and possibly ordered. Megadolomite is also slightly Ca-rich (53.7 mol%), 

suggesting that megadolomite is at least nonstoichiometric, even if  it is still ordered.
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Table 3.2. Major- and Minor-eiements in Dolomites. Results with stars were analyzed 

by Electron Microprobe.

Microdolomite

n=7

Massive dolomite 

n=15

Megadolomite

n=8

Patchy

dolomite

n=2

CaCOj(molS6):

Mean

Range 55.2 59.4*{n=8)

54.9*(n= 1)

52.3 53.7 52.2*(n=2) 56.9*

51.8-62.8 55.1-63.5* 49-54.9 50-56.4 55.5-55.9* 56.7-56.8*

Sr (ppm):

Mean 148 82 113 -

Range 90-260 40-174 92-175 -

Na (ppm):

Mean 369 223 269 -

Range 290-476 180-270 200-305 -

Fe (ppm):

Mean 257 435*(n=3) 134 303 125* n = l

Range 174-351 154-864* 69-259 184-423

Mn (ppm):

Mean 80 197*(n=2) 31 40 -

Range 35-128 184-210* 20-51 20-52 -

3.10.4.3 Sodium

Sodium is the most abundant cation in seawater. Sodium has been used as a 

palaeosalinity indicator (Veizer, 1978). In carbonate minerals, sodium can be present in 

the crystal lattice replacing Mg and Ca (Land and Hoops, 1973), and also in interstitial 

positions of crystal as inclusions. In the Turner Valley carbonates, calcitic crinoids have 

the highest Na concentration with a  mean o f 558 ppm, varying from 349 to 893 ppm. 

Calcite cements (equant and coarse spar) have somewhat lower Na concentrations than 

that o f crinoids and averages about 340 ppm. Different types of dolomite have various

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Na contents (Table 3.2). Microdolomite has the highest Na content with an average of 

369 ppm varying from 290 to 476 ppm. Pervasive matrix dolomite has a much lower Na 

content, varying from 180 to 270 ppm, while megadolomite has a slightly higher Na 

content than matrix dolomite with a mean of 269 ppm, varying from 200 to 305 ppm. 

Na contents in various types of dolomite are higher than that of normal marine dolomite 

(110 to 160 ppm, Veizer, 1983). Dolomite crystals may have some Na-rich inclusions.

3.10.4.4 Strontium

Strontium concentrations are low in both calcite and dolomite components of the Turner 

Valley Formation. Calcite crinoids have a mean of 302 ppm, much lower than that of 

modem marine high-Mg calcite, 1000 ppm (Veizer, 1983). Hence crinoids may have 

undergone recrystallization and stabilization during diagenesis. Calcite cements (equant 

and coarse spar) have similar Sr concentrations to crinoids and average about 278 ppm. 

The diagenetic fluids for cementation may be either similar to the fluids of crinoid 

diagenesis or somewhat similar to seawater.

Dolomite has a much lower Sr concentration than calcite components due to the smaller 

Sr partition o f dolomite than that of calcite. The distributions of Sr are similar to those 

of Na in various types o f dolomite of the Turner Valley Formation (Fig. 3.1). 

Microdolomite has the highest Sr content (average 148 ppm), but still much lower than 

that (470 to 550 ppm) reported by Veizer (1983) or that (500 to 700 ppm) reported by 

Behrens and Land (1972) for marine dolomite.

Few ancient dolomites contain more than 200 ppm Sr, even when presumed to be 

initially of hypersaline origin (Land, 1985). Two distribution coefficients of dolomite 

have been experimentally obtained at high temperatures (250°C-300pC). One is 0.07 by 

Jacobson and Vsdowski (1976), the other is 0.025 by Katz and Matthews (1977). Veizer 

(1983) prefers 0.07. Land (1985) proposes that there are at least two distribution 

coefficients applied to dolomite, one for the formation of the original phase, and a second 

(lower) for the stabilization reaction to a more ordered, stoichiometric phase. In addition, 

Veizer (1978) suggested that the "precursor influence" o f Sr concentration is o f 

significance. Perhaps, this is why microdolomite has the highest Sr content since
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its precursor (lime mud) could be aragonite, which also has a higher Sr distribution 

coefficient and Sr content than calcite. Meanwhile, microdolomite could have formed 

first as a protodolomite (original phase) with high Sr contents.

However, in the Turner Valley Formation, pervasive matrix dolomite and 

megadolomite could have the same precursor (diagenetic calcite), but their Sr contents 

are different. The precursor of pervasive matrix dolomite should be limestone (calcite), 

whereas the precursor of mcgadolomite could be matrix dolomite as well as skeletal 

grains from the petrographic observation. In addition, megadolomite crystals are much 

coarser than matrix dolomite, hence more stable since the larger a crystal is, the more 

stable it will be (Durham and Olson, 1980). So, according to either Land or Veizer (also 

Durham and Olson), megadolomite should have a lower Sr concentration than pervasive 

dolomite. The opposite results obtained suggest that dolomitization is a  very complex 

process(es), and the ordered state and precursor influence are not the only important 

factors; other factors such as dolomitization process and fluids should be considered, too. 

From the discussion above, megadolomite is not the recrystallization product of matrix 

dolomite at elevated temperature, nor have megadolomite and matrix dolomite resulted 

from the same dolomitization fluids and formed during the same geological time scale. 

The low Sr concentration of pervasive matrix dolomite could have resulted from the 

flushing of lower Sr content fluids (e.g., meteoric water) if megadolomite formed later 

in deeper burial environments.

In addition, Sr and Na contents have changed with burial depth in pervasive matrix 

dolomite (Fig. 3.2 and Fig. 3.3). Sr and Na concentrations increase as the depths 

increase. It is interesting that Sr and Na contents of crinoids have similar patterns of 

distribution to that of pervasive matrix dolomite with depth (Fig. 3.4). Hence, if both 

dolomitization fluid and stabilization fluid compositions are constant, and the flow 

direction is linear,then the diagenetic and dolomitization fluids for both crinoids and 

pervasive matrix dolomite could have a predominantly downward movement since both 

Na and Sr have D <  1 as discussed in details in section 3.10.4.4, and the fluids came 

from upper parts or overlying strata, probably from the surface freshwater recharge 

during sedimentary basin exposure.
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3.10.4.5 Manganese

Mn concentrations in all carbonates of the Turner Valley Formation are very low (Fig. 

3.5). They usually vary from 20 to 40 ppm in both calcites and dolomites. Calitic crinoid 

and cements have lower Mn than dolomite, some of them have concentrations too low 

to detect. Microdolomite has a high Mn content relative to other dolomites. Massive 

dolomite and megadolomite have low Mn concentrations.

3.10.4.6 Iron

Fe like Mn has a low concentration in the Turner Valley carbonates (Fig. 3.5). Ferroan 

calcite and dolomite have not been seen from the stained thin sections. CL also exhibits 

dull to brown colour for calcite and dolomite. It is interesting that Fe concentrations 

show somewhat similar trends to that of Na and Sr for dolomites (Fig. 3.6). 

Microdolomite has higher Sr and Fe contents, whereas massive dolomite has the lowest 

Fe concentration. However, crinoid and calcite cements have relative higher Fe contents 

(Table 3.2).

Because the significance of iron and manganese in the 2 +  valence state is that they 

require reducing conditions to exist, they arc incorporated into the carbonate mineral 

lattice as bivalent cations in at least moderately reducing environments (Pierson, 1978; 

Frank et al., 1982). Near-surface meteoric groundwater is normally well oxygenated 

(Evamy, 1969), but distal parts of intermediate and deep carbonate aquifers, remote from 

recharge areas, can be anoxic (Meyers, 1978; Grover and Read, 1983). Fe and Mn are 

preferentially incorporated into carbonate minerals during diagenesis due to their 

distribution coefficients larger than 1. Hence, Mn2+ and Fe?+ concentrations are 

supposed to be low in marine water and meteoric water where at least partially oxidized 

environments are maintained related to completely subsurface reduced environment.

3.10.4.7 Analytical Results of M icroprobe

Four thin sections containing four types o f dolomite were analyzed for major and minor 

elements. Some results (with stars) are listed in Table 3.2. Trace element (Sr, Fe and 

Mn) contents were too low to detect. Although these results are somewhat different
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from those of chemical analysis due to using different methods (the resolution of the 

microprobe is much higher) the trends of compositional variation of various dolomites 

are similar (Table 3.2). For instance, Microdolomite is the least stoichiometric, and 

massive dolomite is relatively stoichiometric, and microdolomite has relatively high Mn 

and Fe concentrations from the results of two analytical methods.

Furthermore, the electron microprobe analysis also illustrated some compositional 

variations in the microdolomite phase. Enlarged grains usually are more stoichiometric, 

and have higher Mn and Fe concentrations than smaller rhombs of microdolomite (Plate 

3.13), suggesting that enlarged grains formed during late burial environments or 

recrystallized from crystals of microdolomite.

3.10.4.8 Summary of Major, Minor and Trace Elements
The study of major and minor elements is used to determine the precipitating and 

diagenetic environments o f carbonates. Several conclusions were reached from the results 

o f this study.

(1) Crinoids have undergone recrystallization (neomorphism) evidenced by their lower 

Mg contents and lower Sr concentrations than that of normal marine calcite. The 

diagenetic fluids had a  downward movement and/or came from overlying strata.

(2) All calcite cements probably formed at the time o f crinoid stabilization due to the 

similar major and minor element concentrations between crinoids and cements, or they 

had similar diagenetic fluids.

(3) Microdolomite formed in Na- and Sr-rich evaporative environments under reducing 

or weakly oxidizing conditions. It may have undergone recrystallization during burial 

environments.

(4) Dolomitization fluids for pervasive matrix dolomite and megadolomite are different, 

and the two types o f dolomite formed under very different conditions. Dolomitization 

fluids for pervasive matrix dolomitization had a  downward movement direction, possibly 

resulting from meteoric water recharge of the overlying strata.

(5) Relatively low Fe and Mn concentrations in all calcites and dolomites probably 

represent that Fe- and Mn-depleted diagenetic fluids were supplied during the whole
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diagenetic history of the Turner Valley Formation.

3*10.5 Isotopes
3.10.5.1 Oxygen and Carbon Isotopes
3.10.5.1.1 Introduction

For carbonate studies, the two most naturally abundant stable isotopes o f O and C are 

commonly used, and have become increasingly important tools in diagenetic studies. The 

isotopic composition of calcite cement and dolomite is usually used to help characterize 

the diagenetic fluid that have reacted with the rocks (Land et al., 1975). 5,80  and 513C 

values o f normal marine carbonates will increase when altered by evaporative water, and 

will decrease when altered by meteoric water. Carbonates precipitated from marine water 

generally have a  5uO ranging from -2 to + 4  per mil PDB, and 5t3C from +1 to + 5  per 

mil PDB. Carbonates stabilized under meteoric water generally have 5lsO from 0 to -5 

per mil and 513C from + 2  to -10 per mil (Drunkman and Moore, 1985; Moore, 1989).

During burial diagenesis, there are several situations that affect the 5l80  and 513C values 

o f carbonates at the time o f precipitation or recrystallization, and lead to compositional 

trends far from the ideal presented. For 5180 ,  the most important is temperature 

fractionation, which can ~ause negative shifts in 5180  values at elevated temperatures 

(Anderson and Arthur, 1983). The relationship of oxygen isotopic fractionation and 

temperature between water and calcite as a function o f temperature has been estimated 

before (e.g., Epstein et al., 1953; Craig, 1965; Friedman and O’Neil, 1977 in Land, 

1985). Because the fractionation factor is poorly understood, dolomite has presented a 

special problem for many years. While extrapolating the results o f high-temperature 

exchange experiments suggests that dolomite should concentrate l80  by approximately 6 

per mil relative to contemporaneous calcite (Northrop and Clayton, 1966; O'Neil and 

Epstein, 1966b). However, Land (1980) believes that a 3-4 per mil o f l80  higher than 

syngenetic calcite is more reasonable. For 5I3C, the organic activity in carbonate 

diagenesis can result in a  considerable negative shift in 613C values. Organic carbon 

exhibits low values o f 5,3C (-24 per mil, PDB) relative to the oxidized forms of carbon 

found as CO2 (-7 per mil) and marine carbonates (0 to + 4  per mil). Extremes in 613C
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values generally involve methane generation either by biochemical fermentation in the 

near surface, or by thermochemical degradation of organic matter in the subsurface at 

temperature greater than 100°C (Anderson and Arthur, 1983). Soil weathering and 

carbonate mineral stabilization involving dissolution o f marine limestones and sediments 

and subsequent precipitation o f calcite cements in the vadose and the shallow phreatic 

zones will generally result in cements and limestones with moderately low 513C 

composition (Allen and Mattews, 1982; James and Choquette, 1984). Both O and C 

isotopes for calcite and dolomite components of the Turner Valley Formation in Quirk 

Creek were analyzed. They can be divided into two groups with obviously different 5uO 

and 513C values. The difference between dolomites and coexisting calcites is more than 

3-4 per mil, as Land (1980) predicted.

3.10.5.1.2 Analytical Results 
Crinoids and calcite cements:

Figure 3.7 shows the 5180  versus 513C values of crinoids and calcite cements. 

Undolomitized crinoid grains have a mean 5**0 of -5.1 per mil, varying from -6.77 to - 

3.29 per mil PDB; and a mean S,3C of +3.08  per mil varying from +2.59 to +3.55 per 

mil. Bladed prismatic calcite has a mean 5l80  of -5.88 per mil ranging from -6.20 to - 

5.56 per mil, and a mean 513C of-4.35 per mil varying from -8.40 to -0.31 per mil. 

Blocky calcite cement has a  mean 5,80  of -7.42 per mil, varying from -7.65 to -7.19 per 

mil PDB; and a mean 513C o f -2.55 per mil, varying from -3.02 to -2.07 per mil, PDB. 

Equant calcite spar and coarse mosaic spar have much more negative values in both 5l80  

and 513C. They have §lsO averaging -11.45 and -10.94 per mil, varying from -12.48 to - 

9.33 per mil and from -12.33 to -9.31 per mil, PDB, respectively; 5,3C values averaging 

-8 .1 per mil and -8.56 per mil, PDB varying from -9.67 to -5.82 per mil and from -2.82 

to -12.69 per mil, PDB, respectively.

Crinoid calcite has slightly negative 5I80  values and a similar mean 5l3C value relative 

to those precipitated in modem marine environments. Crinoid deposited in shallow 

marine usually consists o f high-Mg calcite (Scholle, 1978). Unstable Mg-calcite will 

change into low-Mg calcite or diagenetic low-Mg calcite during diagenesis. Because the
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isotopic composition is a function of solution, mineralogy and temperature (Land, 1980; 

Arthur and Anderson, 1983), if one o f the three was modified from its original value, 

then the stabilization o f metastable minerals would also result in some change of isotopic 

composition. The stabilization of crinoids and limestones of the Turner Valley Formation 

possibly occurred during early burial as is indicated by their similar 8l3C values to the e 

of marine carbonates. The slightly negative 8K0  is probably due to elevated temperatures 

or alteration by later meteoric fluids (Al-Aasm and Veizer, 1986; Moore, 1989).

Bladed prismatic calcite and blocky calcite cements probably formed during early burial 

due to their similar duO values to crinoids, and were associated with organic activity 

because o f the negative 513C values and also the presence of pyrite with blocky calcite 

cement. The association of authigentic pyrite with sediments is an indicator o f an 

anaerobic environment (Berner, 1970), and indicates that bacterial sulfate reduction is the 

first major step in the process of sedimentary pyrite formation. Organic matter is needed 

as an energy for the sulfate reduction. Vein equant calcite and coarse mosaic spar formed 

later than bladed prismatic calcite and blocky calcite cements because vein equant calcite 

crosscuts blocky calcite, whereas coarse mosaic spar includes or/and succeeds to bladed 

prismatic calcite in voids. According to petrography, all calcite cements, especially 

calcite veins and blocky cement, are distributed in the middle and upper parts o f the 

Turner Valley Formation. And from trace elements, crinoid stabilization and calcite 

cementation probably occurred at the same time or from the same fluids. The diagenetic 

fluids resulted from the overlying strata, possibly from meteoric water. Hence, their 

formations were also probably overlapped by meteoric fluids and probably associated 

with organic activity due to their strongly depleted 6180  and 5,3C values.

Dolomites
All types o f dolomite have much higher 5**0 and 513C values than various calcite 

components in the Turner Valley carbonates (Fig. 3.8). Microdolomite has the heaviest 

5lgO varying from 0 to -2.22 per mil averaging -0.53 per mil, PDB. Patchy dolomite has 

lighter 5,80  than microdolomite varying from -3.52 to -0.79 per mil with a mean of -2.19 

per mil PDB. Pervasive matrix dolomite has lower 5iS0  than patchy dolomite varying
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from *5.46 to -1.11 per mil with a mean of -3.43 per mil, PDB. Megadolomite has the 

lowest 5,lO varying from -6.47 to -2.12 per mil with a mean of -4.49 per mil, PDB. 

Petrographic and trace element results show that microdolomite probably formed in a 

sabkha evaporative environment. Its slightly depleted S180  relative to that of modem 

sabkha (0 to + 3  per mil, PDB; McKenzie, 1981) may reflect that microdolomite has 

undergone some recrystallization during iate stages of dolomitization. According to 

petrography, patchy dolomite formed ir. a  relatively early burial environment. Assuming 

that the dolomitization fluids for patchy dolomite were of marine parentage, with 5I80  

values similar to the Mississippian seawater ( about -1 per mil SMOW, e .g ., Veizer, 

1983), then the temperatures o f the dolomitization fluids can be calculated using the 

following equation (Fritz and Smith, 1970):

103LncrlW.wlta. =  2.78 x 10fi T 2 (K) +  0.11 (1)

Assuming the starting temperature is 25°C (average annual temperature), then the patchy 

dolomite could have formed at a temperature of 34°C. If  25°C/km is used for the 

geothermal gradient in the Western Canada Basin, then the burial depth o f patchy 

dolomite would be around 360 m. The overlying Mount Head Formation has a  preserved 

thickness of 200-300 m (Macqueen et al., 1968), covered the Turner Valley carbonates.

From petrography, pervasive matrix dolomite formed later than patchy dolomite. If  

patchy dolomite formed during burial diagenesis, then massive dolomite could have 

formed at relatively greater depths due to its lower 5180  than patchy dolomite. Using the 

same assumptions and calculations as for patchy dolomite, pervasive matrix dolomite 

could have formed at a temperature o f 40°C and a  burial depth around 650 meters. While 

if  the meteoric water was intervening the dolomitization fluids, the burial depth and 

temperature of pervasive matrix dolomite did not need to be that deep (650 m) and that 

high (40°C) due to the negative 5180  values o f meteoric water. In addition, the results o f 

fluid inclusions also show that matrix dolomite formed at a  low temperature (<50°C). 

Furthermore, the burial-temperature curve in Fig. 3.9 by Packard (personal 

communication, 1991) shows that the Turner Valley Formation had a  predominantly 

shallow burial history, mostly shallower than 500 m and temperatures around 30°C. Only 

in early Cretaceous were burial depths greater than 1G00 m and

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Tim e, my

400

Dev Miss Penn Perm

100

E.K L.K T e r t i a r y

otM

s

J2
-u
O*
0)
Q

2000

3000

4000

5000t-i

“  6000

7000

8000^

9000

• 1 
1 I V \  i B u r ia l -

____ J.______1______1 ______

__________
!  i

_________I ________1______
\\1 Dept i(mj/

1 I '
1 I A

T em p e ra tu re  ( WC)— ------A u
vU

! 1 '  i i i
1 1 i

i 1
_ _ _ _ _ _ _ _ _ _ _ _ : _ _ _ _ _ _ _ _ _ _ _ i ______- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . .

I \  1

■ !  1
■ i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ L _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ _ _

■ i  I

, r 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ [ _ _ _ _ _ _ _ _ _ _ _ L_ _ _ _ _ _ _ _ _

i i j
i  ! i

! i
___ i _ _ _ _ _ _ _ _ _ _ _ i_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

1
1 1

» i 
! i. '

160

180

Fig. 3 .9 . Plot o f the burial history curve o f  the Turner Valley Carbonates (modified 

from Packard, unpublished data).

Te
mp

er
at

ur
e 

(D
C

)



www.manaraa.com

temperatures were more than 40°C, and during Tertiary reached the deepest burial of 

7000 m and the highest temperature of 170PC. Hence, the temperatures from burial 

curves of the Turner Valley Formation are coincident with that from O isotopic results, 

and show that massive dolomite probably formed before the Cretaceous at a relatively 

shallow burial, with freshwater possibly intervening. Megadolomite formed in the very 

late diagenetic stage, according to petrography. The lower 5,sO o f megadolomite related 

to massive dolomite could have resulted from elevated temperatures, and megadolomite 

probably formed in Cretaceous or later and deeper burial environment. The 513C values 

of all dolomites have a narrow range and positive values relative to their <5lsO values. 

The reason is probably because the calcite precursors of dolomites have buffered the 513C 

values. According to the trace element results, massive dolomite may have formed in a 

mixing-zone, but if  dolomitization occurred in the deep phreatic zone, then 5l3C values 

of dolomite may have been negligibly effected by the soil zone (Lohmann, 1988).

3.10.5.2 Sulfur Isotopes

Both primary and secondary anhydrites were analyzed for sulfur isotopes. Sulfate in 

modem marine water has a rather uniform 5MS values (about 20 per mil, CDT). 

Evaporative sulfates are deposited with negligible S isotope fractionation (Nielson, 1979), 

and thus preserve the 8MS of the sea water sulfate. Furthermore, sulfur isotopic 

composition has changed with time in oceanic reservoirs during geological history 

(Neilson, 1979). In sedimentary rocks and diagenetic processes, the redox reaction of S 

compounds usually influences S isotopic composition. As a general rule o f kinetic 

fractionation, the reaction goes faster with the light isotope. The kinetic mechanism 

producing S isotope fractionation is involved in bacterial sulfate reduction. The Upper 

Mississippian seawater had a value around 14 per mil (Neilson, 1979), whereas 

primary anhydrite o f the Turner Valley Formation has a 5MS of about 15 per mil, and 

secondary anhydrite has a SMS about 14-16 per mil. There is no obvious difference 

between primary anhydrite and secondary anhydrite for S isotopes, and thus they may 

have the same sources. That is, secondary anhydrite resulted from the dissolution of 

primary anhydrite of both the Turner Valley Formation and other Upper Mississippian
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strata (e.g., the Mount Head Formation). The presence of breccias in primary anhydrite- 

rich strata, and the evidence of widespread downward fluids in the Turner Valley 

Formation (trace element results) may prove this idea. The slightly higher values of S 

isotopes in primary and secondary anhydrites than that in the upper Mississippian 

seawater were possibly caused by the bacterial reduction o f sulfate, as evidenced by the 

presence of pyrite in the Turner Valley Formation, although it is not abundant.

3.10.5.3 Strontium  Isotopes

The utilization o f strontium isotopes in carbonate diagenesis has become more 

significant in recent years. 87Sr is a radiogenic isotope that results from the decay of 

87Rb. “ Sr is one of the stable strontium isotopes. Since caibonate minerals contain 

negligible Rb, once 87Sr is incorporated into a carbonate mineral, the relative ratio of 

^Sr/^Sr will remain constant (Faure et al., 1972).

The 87Sr/“ Sr value is constant in marine water at any one time, and has varied through 

geological time (Burke et al., 1982). Fresh meteoric water has a low Sr content and a 

high 87Sr/86Sr value gained by interaction with terrestrial clays and feldspars, which 

usually have higher Rb. Hence, 87Sr will increase in clastic sediments with time. 

However, the 87Sr/“ Sr values in calcite and dolomite may reflect the age of a caibonate 

rock if  they precipitate in seawater, and exhibit the intervening of enormous volumes of 

meteoric water which overcome the Sr-buffering of the marine limestones if calcite and 

dolomite have rich 87Sr/86Sr above the marine value (Moore et al., 1988).

Upper Mississippian seawater has a  87Sr/86Sr o f 0.7076-0.7078 (Burke et al., 1982). Sr 

isotopes results show no strong radiogenic Sr was found in any component o f the Turner 

Valley Formation. Primary anhydrite has a 87Sr/MSr of 0.7076, reflecting its precipitation 

in the Mississippian seawater and an unalterated Sr isotopic value. Burial anhydrite has 

^Sr/^Sr varying from 0.7081 to 0.7083. v S t/ uS t for various types of dolomite are 

plotted versus 5180  (Fig. 3.10). Microdolomite has ^Sr/^Sr values varying from 0.7077 

to 0.7037 with a mean of 0.7080. Pervasive matrix dolomite has ^Sr/^Sr values varying 

from 0.7083 to 0.7085 with a mean of 0.7084. Megadolomite has 87Sr/MSr values varying 

from 0.7083 to 0.7087 with a mean of 0.7085.
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Microdolomite, as an evaporative dolomite, has a relatively wide range o f "S r/wSr 

from primary Mississippian seawater value to the highest value in the Turner Valley 

Formation. The variations in "Sr/*®Sr values possibly reflect the modifications (e.g., 

recrystallization) of microdolomite during later diagenesis (e.g., Gao and Land, 1990). 

The wider "S r/wSr values of microdolomite may have reflected that more radiogenic "S r 

was incorporated into microdolomite during water-rock interaction of later massive 

dolomite and megadolomite dolomitization. Pervasive matrix dolomite has higher "Sr/wSr 

than the Mississippian seawater, suggesting that radiogenic >7Sr was incorporated into 

dolomite from relatively "Sr-rich fluids during dolomitization. The Turner Valley 

Formation does not have shales or other Rb-bearing rocks, thus the radiogenic Sr must 

have come from extraformational fluids. One possibility is that the dolomitization fluids 

could have derived from the deeper basin, however this source of fluids could have 

resulted in much higher "S r/“ Sr in dolomite due to the availability o f abundant 

radiogenic Sr and its older age. Hence, this source is unlikely, or less significant, 

because of low "Sr/^Sr in pervasive matrix dolomite. Another possibility is that 

dolomitization fluids came from meteoric water, especially with distal sources passed 

through old Sr-bearing rocks (e.g., shales). This meteoric water with high "S r/“ Sr and 

low Sr concentration could have resulted in moderate changes of "S r/MSr in dolomite 

during dolomitization (Moore, 1989; Banner et al., 1988; 1989). Megadolomite has 

similar "S r/^Sr values to that of pervasive matrix dolomite. Hence, the dolomitization 

fluids for megadolomite were also relatively rich in "Sr.

3.10.5.4 Summary of Isotopic Studies
From the results and discussion of isotopic values, the following conclusions have been 

reached:

1. Bladed prismatic calcite and blocky calcite cements formed in early burial 

environments associated with organic activity shown by depleted S,3C.

2. Equant vein calcite, coarse calcite spar and poikilotopic calcite cements also 

precipitated in early burial stages after oladed prismatic calcite and blocky calcite 

cements. All their precipitates were probably associated with meteoric water and organic
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activity due to their strongly depleted 6**0 and 5I3C values.

3. Primary and secondary anhydrites have similar S isotopic composition, suggesting that 

secondary anhydrite resulted from the dissolution of primary anhydrite, probably by 

meteoric water. Sr isotopes show that secondary anhydrite formed at the time of 

pervasive matrix dolomitization.

4. Microdolomite formed in an evaporative marine environment, and underwent multiple 

modifications during late dolomitization.

5. Patchy dolomite probably formed at a shallow burial environment, about 360 m and 

at a temperature of 35°C.

6. From the 6!80  values, pervasive matrix dolomite probably formed in a subsurface 

burial environment or/and affected by meteoric water. The consistent and narrow range 

of 513C values of massive dolomite may be because the calcite precursors have buffered 

the 5,3C values and/or dolomitization occurred in a deep phreatic zone.

7. Megadolomite formed during deeper burial, at higher temperatures than patchy and 

pervasive matrix dolomite.

3.11 SUMMARY O F DIAGENESIS

In general, the carbonates of the Turner Valley Formation have undergone a  complex 

diagenetic history. Various diagenetic events occurred during different geological times, 

and overlapped one another. A paragenetic sequence o f the identified diagenetic features 

is summarized and listed in Table 3.3. The diagenesis of the Turner Valley Formation 

can be subdivided into 25 events or phases and five stages, although they grade into one 

another.

Stage I: After deposition, sediments underwent Iithification and initial diagenesis such 

as seafloor cementation and evaporative dolomitization (Phase 1-3).

Stage II: Sediments were gradually buried at shallow depths ( <  300 m) in the 

Mississippian. Stabilization of metastable minerals occurred; meanwhile, the basin began 

to be exposed due to crustal rising or sea level dropping. Then, freshwater began to flush 

the sediments followed by the dissolution o f metastable minerals and skeletal grains, and 

major calcite cementation, and silicification (Phase 4-17).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Stage HI: Basin was exposed during the early Pennsylvanian and flushed by meteoric 

water. Plaeokarst features were developed on the surface o f the sedimentary basin. 

Sediments were undergoing vertical freshwater flushing and possible lateral seawater 

intervening, which resulted in wide burial anhydritization and pervasive dolomitization 

(Phase 18-20).

Stage IV: Basin subsided and burial increased (>  1000 m) considerably in the early 

Cretaceous. Deep burial diagenesis began, such as the formation of styloiite II. Burial 

anhydritization continued from stage III, but became less significant in volume. 

Hydrocaibons were produced and migration ensued. Megadolomite might have also 

formed in this stage (Phases 21-23).

Stage V: Basin was uplifted again and underwent strong folding and faulting during the 

late Cretaceous, which resulted in fracturing, dissolution (Phase 24-25).
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Table 3.3. Paragenetic Sequence of the Turner Valley Carbonates

Diagenetic Phase Marine Burial
shallow intermediate deep — mixing-zone---

1 Micritization
2 Syntaxial Cement
3 Microdolomite
4 Fracture I
5 Dissolution
6 Bladed prismatic
7 Blocky cement
8 Vein cement
9 Coarse Spar
10 Poikilotopic cement
11 Length-slow Chert
12 Megaquartz
13 Styloiite I
14 Patchy Dolomite
15 Micro-quartz
16 Length-fast Chert
17 Macroquartz
18 Fracture II
19 Burial Anhydrite
20 Massive Dolomite
21 Styloiite II
22 Hydrocarbon Production and Recharge
23 Megadolomite
24 Fracture III
25 Dissolution
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CHAPTER IV 
ORIGINS AND MODELS OF DOLOMITIZATION

4.1 FACIES AND MASSIVE DOLOMITIZATION
Lithofacies types in the Turner Valley Formation are discussed in detail in chapter II. 

There are five major sedimentary facies: grainstone, packstone, wackestone, mudstone 

and sabkha facies. Since sabkha facies has a local distribution and has been completely 

dolomitized to microdolomite, this facies and microdolomite will not be discussed in this 

part. Patchy dolomite and megadolomite make up a small proportion relative to massive 

dolomite. Hence, dolomitization here means pervasive matrix (massive) dolomitization 

if  not mentioned specifically. Various characteristics o f dolomite are different in different 

facies as mentioned in chapter III. The most obvious characteristics are the changes of 

the proportion and crystal size o f dolomite in various facies. Though pervasive matrix 

dolomite is distributed widely from mudstone to grainstone facies, the crystal size 

changes considerably. In mudstone facies, dolomite crystals have a mean size of 40 pm 

varying from 20 to 60 pm. In wackestone facies, dolomite crystals have a similar size 

as mudstones with a mean of 70 pm varying from 50 to 100 pm. However, packstone 

and grainstone facies have much coarser dolomite crystals than mudstone and wackestone 

facies. In packstone facies, dolomite crystals have a mean of 120 pm varying from 80 

to 180 pm, whereas in grainstone facies, dolomite crystals have a mean size of 150 pm 

varying from 100 to 300 pm. It is clear that dolomite crystal size increases from fine 

grained to coarse grained facies. This is possibly due to the surface area, because lime 

muds have a larger surface area than lime grains, thus for a  unit volume, more dolomite 

crystals could nucleate in the muds (Murray and Lucia, 1967).

4.2 PROPORTION AND DISTRIBUTION OF DOLOMITE IN LIMESTONES
As mentioned often in this study, fine grained facies have usually been almost 

completely dolomitized (80-100%), and skeletal grains and matrix have rarely retained 

their calcite mineralogy in the Turner Valley Formation. On the one hand, coarser
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grained-facies have usually been only partially dolomitized from 20 to 80 percent in 

volume. Some grainstones, though rare, have been dolomitized under 10% (patchy 

dolomite), in which dolomite crystals are usually present in bryozoans and corals, 

whereas crinoids remain unaltered. On the other hand, completely dolomitized packstones 

and grainstones are also observed in three wells o f Quirk Creek.

The heterogeneous distribution of dolomite in various facies has been attributed to the 

selective dolomitization and was also noted by other researchers (Illing, 1959; Murray 

and Lucia, 1967). The preference o f dolomitization in limestone has been controlled by 

several parameters: (1) permeability (Ming, 1959), (2) particle size (Murray and Luccia, 

1967), (3) precursor mineralogy and other factors.

Permeability variations could have acted to control selective dolomitization because 

undolomitized packstones and grainstones have tight calcite cementation predating 

dolomitization, which hindered water-rock interaction and the passage o f dolomitization 

fluids. However, massive dolomite occurred after major cementation and compaction, it 

is not clear whether the mud component still retained effective permeability after 

compaction and cementation since mud is sensitive to compaction. Compared to those 

undolomitized limestones, completely dolomitized coarse-grained limestones usually 

contain calcite veins. The pre-existing fractures probably provided access for diagenetic 

fluids through the limestones, resulting in more complete dolomitization.

Particle size involved in the selectivity is preferred by Murray and Luccia (1967). 

Because the mud component has a larger surface area than skeletal-grain components, for 

the given volume and kind o f fluids, the mud component would have more sites for 

dolomite crystals to nucleate than skeletal grains. Therefore, mudstones have usually 

been completely dolomitized, with small crystal sizes, whereas grainstone usually has 

partially been dolomitized with coarser dolomite crystals (Fig. 4.1).

Limestone has various reactivities to transform into dolomite due to the variation of 

mineralogy. High-Mg calcite and aragonite are more soluble than low-Mg calcite or 

diagenetic low-Mg calcite. High-Mg calcite first changes to low-Mg calcite during early 

diagenesis (Friedman, 1964), hence more soluble aragonite is left at the time of 

dolomitization. Modem and recent muds consist predominantly of aragonite.
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Mississippian seawater may have been aragonitic one (James and Choquette, 1983), and 

some fossils (e.g. molluscs, bryozoans) have a higher percentage o f aragonite than 

crinoid (Scholle, 1978). Therefore, different soluble components (calcite and aragonite) 

in a limestone could be susceptible to selective dolomitization.

Experiments by Baker and Kastner (1981) show that the presence of some ions (e.g., 

S042') inhibit dolomitization. Organic matter reduction usually results in the decrease o f 

S042' in burial environments, therefore, the presence o f organic matter could benefit 

dolomitization. In addition, anhydrite probably prevented dolomitization in some 

limestones since it filled pores o f limestones and replaced parts in limestone, thus 

isolating calcite grains from alteration by dolomitization fluids. Furthermore, insoluble 

materials in carbonates may have been composed o f clay minerals and/or organic matter, 

and may have acted to accelerate the reaction of dolomitization, because the correlative 

relationship between the percentage of insoluble materials and that of dolomite (Fig.4.2), 

This may be why mudstones (with more insoluble materials) have higher proportion of 

dolomite than other facies.

All these factors may have influenced dolomitization o f the Turner Valley Formation, 

whereas permeability probably played a major role for selective dolomitization, especially 

for more completely dolomitized grainstones.

4.3 DOLOMITIZATION AND OTHER DIAGENETIC EVENTS 

Cementation, silicification and anhydritization are also important diagenetic events 

besides dolomitization in the Turner Valley Formation, and they either benefit or inhibit 

dolomitization. The study of these events could provide very helpful information for 

constraining dolomitization. Most importantly they can be utilized to evaluate uie relative 

timing of dolomitization, based on their mutually crosscutting relationship with dolomite, 

and also to trace the dolomitization fluids according to their coexistence with dolomite.

Calcite cementation occurred before massive dolomite. Calcite veins are widely 

distributed in massive dolomite from mudstone facies to grainstone facies and in the 

middle and upper parts o f the Turner Valley Formation. This suggests that the previous 

fractures probably acted as conduits, and provided potential dolomitization fluids as well
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as fluids for calcite cementation. However, poikiiotopic calcite tightly cemented some 

grainstone facies, where less dolomite crystals are present, suggesting this cement 

inhibited the access of dolomitization fluids.

Silica and silicificadon may have influenced the formation of dolomite due to their 

different environmental requirements of formation (e.g., pH, Eh). In the experiments by 

Baker and Kastner (1981) neither dolomite nor magnesite could form, especially during 

the transformation from opal-A to opal-CT, because tto  transformation requires the 

presence of Mg and high alkalinity, which are also the necessary conditions of 

dolomitization. However, as opal-CT transforms into chalcedony (or quartz), 

dolomitization is benefited since the Mg taken up by the opal-CT is eventually released 

during the transformation. It is certain that silicification in the Turner Valley Formation 

could not have played that much of a role to have hindered and/or favoured massive 

dolomitization due to the small amount of cherts, and at most, it worked locally. In fact, 

dolomitization rarely intervened into the chert nodules. Where some sedimentary and 

diagenetic fabrics are replaced partially by cherts, they could have been "freezed" by 

silicification and escaped dolomitization.

Knauth (1979) proposed a model associated with a meteoric-marine water mixing zone 

for shallow water origin, early replacive chert in limestone. Meteoric waters percolat ng 

through coastal carbonates will become saturated rapidly with respect to calcite due to 

the dissolution of aragonite and Mg calcite. The same waters may also become saturated 

with respect to silica following the dissolution of biogenic siliceous shells. When 

meteoric water is mixed with seawater, the mixing waters will become undersaturated 

with respect to opal-A due to the low silicon concentration in seawater and also 

undersaturated with respect to calcite, whereas opal-CT and quartz may be saturated. 

Therefore, calcite components could be silicified, but dolomite could retain because 

mixing waters may be supersaturated with respect to dolomite. This model is plausible 

for silicification of the Turner Valley Formation, which can explain why patchy dolomite 

rhombs are preserved whereas calcite components were silicified. It may also well 

explain the diagenetic order: at first, calcite cementation resulted from meteoric water 

percolating through aragonitic and Mg-calcitic components, then silicification occurred
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when meteoric water mixed with seawater, finally followed by long and slow processes 

o f massive dolomitization.

Anhydritization is a very important diagenetic process. Primary anhydrite is rare, but 

provides strong evidence for sabkha facies and the origin o f microdolomite. Burial 

anhydrite usually coexists with pervasive matrix dolomite. They are possibly cogenetic. 

Pervasive matrix dolomite might form within a long geological period before deep burial 

due to its ordered crystal structure. Whereas burial anhydrite filled fracture II, both 

fracture II and filling-anhydrite were crosscut by pervasive matrix dolomite (Plate 3.7). 

Burial anhydrite also filled styloiite II, which crosscuts pervasive matrix dolomite. Hence 

it could be suggested that dolomite arid anhydrite could have formed within the same 

geologic time scale, but anhydrite formed at multiple stages with a  wider time scale. 

Meanwhile, the diagenetic fluids could have been the sources o f dolomitizatior.' as well 

as anhydritization also due to their close ^Sr/^Sr values.

According to the experiments by Baker and Kastner (1981) and Morrow et al. (1988), 

low contents of dissolved sulfate could inhibit the formation o f dolomite. Hence, 

theoretically, dolomite could not have formed before anhydrite at relatively low 

temperatures. In addition, in some skeletal limestones, only anhydrite is present, whereas 

dolomite is rare or absent. The most possible explanation is that anhydrite formed first, 

which replaced the matrix and some skeletal ftcgments, occluded all channels and 

isolated limestones from dolomitization fluids.

Therefore, i'; could be concluded that sulfate precipitated first, which increased the 

Mg/Ca ratios as well as decreased the content o f S042' considerably, then massive 

dolomitization followed. After major dolomitization, as the Mg/Ca ratios decreased 

again, some sulfates precipitated from the relicts o f diagenetic fluids. From the point of 

S 042' hindering dolomitization, it is unlikely that massive dolomite formed first, and 

increased Ca/Mg ratios o f fluids for the relatively anhydritization as suggested by Machel 

(1988) for similar cases.

4.4 ORIGINS AND MODELS O F DOLOMITIZATION

Although dolomite rocks are important reservoirs for hydrocarbons and hosts for sulfide
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mineralization, dolomite is still thought o f as a problematic mineral to have bewildered 

geologists for several decades. There are a few reasons for that. The first is that dolomite 

has not yet been synthesized experimentally in sedimentary conditions, albeit a lot in high 

temperatures (e.g., Gaines, 1980). The second is that seawater is supersaturated with 

dolomite, but no widespread dolomite precipitation has been observed in modem normal 

marine environments. The third is that dolomite is a highly ordered and stoichiometric 

mineral and its formation probably needs strict conditions and enough time. Hence, a 

widely accepted theory regarding the chemistry o f dolomitization is absent, which has 

prevented direct interpretation of the physico-chemical conditions of natural 

dolomitization. Therefore, people are used to proposing dolomitization models of 

inference based on field geology and chemical theory. There are four major models of 

dolomitization: Sabkha, seepage-reflux, meteoric-marine mixing zone, and burial 

compaction models (e.g., Morrow, 1982). Other models and result from the modification 

of the four models and are less significant. Sabkha and seepage-reflux models are usually 

used for local and small volume dolomitization (Land, 1985; Morrow, 1982).

Two significant conditions must be satisfied for any model to act as an agent lor 

dolomitization: (1) The amount o f Mg is available to form a given mass of 

dolomitization. (2) A mechanism that can deliver the available ions (e.g., Mg2+, C 0 32', 

H C 03") and also to carry out some ions (e.g., Ca2+).

In the following text, each type of dolomitization in the Turner Valley Formation will 

be provided a favourable uiodel or models. All models will be examined in the light of 

the two preceding conditions and some criteria to test the proposition.

4.4.1 Microdolomite

The petrography of microdolomite has provided much unequivocal evidence to indicate 

that microdolomite is distributed in a sabkha facies. The evidence includes: (1) 

Microdolomite is very fine, grey to dark crystals, suggesting that the precursor was 

composed of micrite. (2) No skeletal fossils have been observed except some algae. (3) 

Microdolomite coexists with primary anhydrite, which has a  typical chicken-wire texture. 

(4) Solution seams and breccia present in microdolomite facies, probably deriving
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from the dissolution of primary sulfate. (5) Microdolomite is distributed locally, and only 

in the middle and top of the Turner Valley Formation with a thickness often less than 2 

meters, and is absent in one (14-12) o f three wells in Quirk Creek. In addition, 

geochemical results also show that microdolomite formed in an evaporative marine 

environment since microdolomite has the Mississippian marine 87Sr/86Sr value of 0.7076 

(Burke et al., 1982), relatively high Sr and Na concentrations and high 6l80  (average - 

0.5 per mil).

Detailed studies o f a modem sabkha in the Arabian (Persian) Gulf (e.g., McKenzie, 

1981; Patterson and Kinsman, 1981, 1982) have provided important information for the 

study of microdolomite in the Tuner Valley Formation. Dolomite is formed by the 

evaporative flood waters which are periodically supplied by flood recharge o f extra high 

tides and storms to the supratidal flats and along old channels. Dolomite is restricted to 

a narrow zone (a few km) within the old channels next to the strandline and in the top 

1 to 3 m of sabkha sediments. McKenzie et al. (1981) found the Mg/Ca molar ratios in 

the areas of dolomite formation are between 2.5 and 7.0. Patterson and Kinsman (1982) 

determined the conditions with a Mg/Ca molar ratios >  6, pH 6.3-6.9 and a lower S042‘ 

content than seawater. The low S042' probably resulted from sulfate deposition and 

microbial reduction. The dolomite possibly forms by replacing aragonite according to: 

Mg2'  +  2CaC03 =  CaMg(C03)2 +  Ca2+ (1)

Further sulfate precipitation can take up the released Ca2+. The model for sabkha 

dolomitization is characterized by the process termed evaporative pumping (Hsu et al., 

1969; McKenzie et al., 1980), or capillary concentration (Shinn et al., 1964; Friedman 

et al., 1967), which is the reverse of seepage-reflux. Morrow (1990) argued that the 

sabkha model may be regarded as a specific example o f the reflux model. Whatever, 

evaporation is the key process.

The crystals of modem sabkha dolomite are usually Ca-rich (52-54.6 mol% CaC03), 

poorly to moderately ordered and fine (1-5 #tm), with SI80  values in the range o f 1 to 3 

per mil, PDB (McKenzie, 1981). However, the degree of order increases, the crystal 

shape is more perfect and crystal size gradually becomes coarser, from 1-2 fim  to 2-5 p m 

to 20 fim  landward, as a result of progressive recrystalHzation through time.
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From the many similarities between microdolomite of the Turner Valley Formation and 

sabkha dolomite o f the Arabian Gulf, it can be concluded that microdolomite is a sabkha 

dolomite. Its perfect crystal shape, relatively coarse size, and lower 5,80  may reflect 

recrystallization at late stages of dolomitization. Particularly, its rims and relatively wide 

87Sr/86Sr values covering those of unaltered crinoid, pervasive matrix dolomite and 

megadolomite suggest that microdolomite was altered by the later dolomitization fluids, 

which caused its syntaxial overgrowth and geochemical modification.

4.4.2 Patchy Dolomite

From petrographic results, patchy dolomite mostly formed during early chemical 

compaction since its distribution is closely associated with pressure solution fabrics such 

as fitted fabrics, dissolution seams, and early styloiite (I). Patchy dolomite is distributed 

along these fabrics, and is also crosscut by them. Hence, these compaction fabrics and 

patchy dolomite formed at the same time. According to 5180  values, patchy dolomite 

could have formed at burial o f 360 m and at a  temperature o f 35°C (discussed in chapter 

III). Since patchy dolomite has a small volume (5-15%), the Mg required for 

dolomitization may have been derived from seawater (connate water) through compaction 

fabrics, which acted as channels to transport diagenetic fluids. Another source could be 

from the local stabilization o f Mg-calcite, which released Mg. The timing for patchy 

dolomitization was possibly pre-Pennsylvanian since patchy dolomite was corroded by 

microquartz and burial anhydrite. Similar to microdolomite, patchy dolomite also has 

syntaxial overgrowth rims, suggesting that patchy dolomite underwent modification 

during later dolomitization.

4.4.3 Pervasive M atrix  Dolomite

The origin of massive dolomitization is much more complex than the others. No single 

model has been widely accepted to date (Hardie, 1987). Sabkha and seepage-reflux 

models were proposed in the 1960’s, however, both have narrow spatial distribution and 

sedimentary restriction, hence they can not explain the regional distribution and precursor 

sediments o f massive dolomitization (Land, 1985). The mixing zone model was once
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"popular’ in the 1970’s and 1980’s since it "solves" the kinetic and Mg source problems, 

and can also explain limpid and ordered dolomite crystals due to slow crystallization 

from diluted solution. However, it has also been challenged since the late 1980's (e.g., 

Machel and Mountjoy, 1986; Hardie, 1987). The burial compaction model has been used 

to interpret massive dolomitization since the late 1950’s (Illing, 1959). This model is also 

favoured by chemical theory and available time. Unfortunately, a sufficient supply of Mg 

and the mechanism for transporting Mg in massively dolomitized rocks, especially in 

deep burial environments, are hard questions for this model to answer.

Perhaps the processes and results of massive dolomitization are too complex for one 

single model to explain, perhaps the "right model" has not been found with our present 

knowledge. Anyhow, we are still used to choosing one from the available models to 

accommodate the petrographic and geochemical picture presented. For the study of the 

Turner Valley massive dolomitization, any interpretation has to account for the following 

facts: (1) the regional distribution and a large-scale Mg source; (2) the lowest trace 

element concentrations compared to other dolomites; (3) moderately depleted 5IB0  values 

and relatively consistent 513C values; (4) widespread burial anhydrite coexisting with 

pervasive matrix dolomite and their slightly radiogenic Sr. Illing (1959) proposed that 

burial compaction resulted in massive dolomitization of the Turner Valley limestones, 

whereas Murray and Lucia (1967) preferred the reflux of brines. In this study, the author 

does not agree with either of them and presents a different interpretation associated with 

multiple agents and factors rather than a single model.

Hvpersaline Evaporative Models

The evaporation o f seawater in areas of supratidal and restricted basins can produce 

dolomitization. The evaporation process is the mechanism of dolomite formation, which 

results in the precipitation of sulfate (gypsum), consequently increases the Mg/Ca ratios 

and the activity and density of seawater, providing the hydrodynamic potential necessary 

for Mg-bearing hypersaline floodwater to sink downward and flow seaward through the 

sediments by seepage-reflux. Sabkha and evaporative lagoons can provide the 

environment (Adams and Rhodes, 1960; Morrow, 1982). However, dolomitization of the
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underlying intertidal and subtidal sediments only occurs up to a few meters beneath the 

sabkha surface (Patterson, 1972). Hence it is unlikely for massive dolomitization to 

happen due to the vertical and lateral restriction of sabkha environment.

Reflux of brines could have caused dolomitization in the Turner Valley Formation as 

Murray and Luccia (1967) suggested because the Mount Head Formation is a  dominantly 

evaporative unit (Illing, 1959; Ng and Jones, 1989), and a likely source for 

dolomitization. In addition, from this study, dolomitization fluids of massive dolomite 

resulted from overlying strata (trace element results), and dolomite proportion also 

decreases downward and westward (away from paleaocoast). However, many questions 

could not be answered by this model. Like the sabkha model, reflux-seepage of brines 

could not form regional dolomitization (Land, 1985). If  massive dolomitization of the 

Turner Valley Formation did form by this model, then dolomitization should have 

occurred very early (e.g., during Mount Head precipitation), predated calcite cementation 

and silicification. Also, the values o f 6I80  and 87Sr/wSr should be similar to that o f the 

Mississippian seawater. However, all conclusions of this study are contrary to those 

assumptions, hence this model is not reasonable.

Burial Compaction Model

This model was first proposed by Illing (1959) to interpret the Turner Valley 

dolomitization. In burial environments, there are no doubts concerning two important 

factors: kinetic inhibition and time availability due to the increase of temperature with 

depth and long burial. In the Turner Valley Formation, the 5,80  of pervasive matrix 

dolomite provides a cloudy picture for pervasive matrix dolomitization fluids. A deeper 

burial compaction of pervasive matrix dolomite could have resulted in the lower 5180  

relative to patchy dolomite. In addition, the crystal size of patchy dolomite and the 

texture of multiple-crystal patches are somewhat similar to those of pervasive matrix 

dolomite. Since patchy dolomite has an obvious compaction origin, it is logical to 

conclude that pervasive matrix dolomite resulted from the further and deeper compaction, 

at higher temperature, that followed patchy dolomite as calculated in chapter m .

However, many facts could not be explained simply by the burial dolomitization model.
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Firstly, pervasive matrix dolomite actually has very different textural characteristics and 

distribution patterns from those of patchy dolomite. There is no clear relationship 

between pervasive matrix dolomite and compaction fabrics observed from petrography. 

Pervasive matrix dolomite crosscuts and obliterated most previous diagenetic fabrics 

including dissolution seams and early styloiite (I). While styloiite II crosscuts pervasive 

matrix dolomite, massive dolomite neither concentrates along styloiite II nor crosscuts 

styloiite II. Furthermore, it is difficult to explain the trace element data. If patchy 

dolomite, pervasive matrix dolomite and megadolomite formed cogenetically as 

continuous burial compaction (patchy dolomite and megadolomite have burial origins as 

discussed in this chapter) from similar dolomitization fluids, but at different depths, 

temperatures and stages, then in addition to that 5I80  values would decrease gradually, 

another clear trend o f trace element distribution could have been observed: Sr and Na 

would change from high to low concentrations, whereas Fe and Mn would increase 

gradually from patchy dolomite to pervasive matrix dolomite to megadolomite. 

Unfortunately, this trend does not exist, pervasive matrix dolomite has the lowest Sr and 

Na concentrations as well as Fe and Mn contents relative to the others.

In addition, one key problem for massive dolomitization is the source of Mg. No large- 

scale source o f Mg is available for this model (Land, 1985). The proponents of the burial 

model, Illing (1959), Davis (1979), and Mattes and Mountjoy (1980), believe that Mg 

and pore waters can be supplied by burial-related clay mineralogical transformation (e.g., 

montmorillonitic clays to illite) in shales during deep basin compaction. However, the 

Turner Valley Formation does not contain any shale, and the low 87Sr/MSr value, low Mn 

and Fe concentrations, and dolomitization fluid flow direction o f pervasive matrix 

dolomite can rule out the deeper basin dolomitization fluids. Meanwhile, the mechanism 

for delivering Mg is a problem. The deeper the rocks are, the harder it is for pore water 

and Mg to reach. Hence, the suggestion by Mundy and others (1992) that the Turner 

Valley massive dolomitization is due to the updip flow of basinal brines, resembling the 

formation of Devonian pervasive dolomitization in Alberta (Machel and Anderson, 1988) 

is also unlikely because massive dolomitization is absent in the underlying strata in 

addition to the evidence presented above.
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Mixing-zone Model

Chemically speaking, dolomite can precipitate in a dilute solution of meteoric water 

mixed with seawater because the solution still maintains a high Mg/Ca ratio o f seawater 

but much less kinetic obstacles due to dilution (Folk and Land, 1975). Meanwhile, this 

model satisfies the two conditions of dolomitization: seawater supplies the Mg and the 

active groundwater movement pumps the dolomitization fluids through limestones (Fig. 

4.3).

Mixing zone model is firstly cited for the Turner Valley dolomitization in this study 

because a lot evidence suggests that meteoric water, together with seawater, once 

intervened the Turner Valley sediments and possibly caused a series of diagenetic events. 

The top Mississippian strata underwent widespread exposure where a paleokarstic surface 

was developed in Alberta (Ng and Jones, 1989). This could have provided an extensive 

meteoric water recharge to the Turner Valley carbonates during the late Mississippian 

or early Pennsylvanian period. Microstalactitic cements were observed in the top 

Mississippian strata (Ng and Jones, 1989), which represent vadose environment. 

However, in spite of the absence of vadose cements in the Turner Valley Formation, 

vadose cements, such as pendant and meniscus, could have been destroyed by late 

cementation when pore space was completely filled by diagenetic fluids (James and 

Choquette, 1984). Furthermore, the Turner Valley Formation could have been in a 

phreatic environment during the meteoric water recharge (Fig. 4.3). Vein-filling cement 

and void-filling cement were widely observed in the middle and upper Turner Valley 

carbonates, both o f which formed after microdolomite and before massive dolomitization. 

They have strongly depleted 5**0 and 5l3C values. In addition, almost all o f those vein- 

and void-filling calcite cements are present in massive dolomitized limestones and in the 

upper Turner Valley Formation, are absent or/and rare in less dolomitized limestones, 

and at the bottom of the Turner Valley Formation. Therefore, the precursor fractures 

probably formed as the basin was rising or sea level was dropping, and voids resulted 

from the dissolution o f limestones by the flushing of meteoric water. Both of them might 

act as conduits to deliver diagenetic fluids for calcite cementation as well as 

dolomitization. The lower Sl80  o f pervasive matrix dolomite relative to patchy dolomite
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Fig. 4.1. Schematic diagram illustrating the inferred time and position o f the Turner 

Valley massive dolomitization.
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could be due to meteoric water in the dolomitization fluids. As discussed in chapter III, 

the temperature and burial depth o f massive dolomitization would be lower and shallower 

when meteoric water was intervened relative to a  simply burial environment. The 

flushing and dilution of freshwater can also account for the lowest trace element 

concentrations (Na and Sr) of pervasive matrix dolomite (in chapter III and Land, 1985). 

The downward flow o f massive dolomitization fluids and diagenetic fluids for crinoids 

suggests that meteoric water recharge is very possible. Some calcite cements with similar 

trace element concentrations to that o f crinoids suggest that their precipitation may be 

effected by seawater.

Moreover, the model of silicification (Knauth, 1979) associated with the meteoric- 

marine mixing zone well fits the situation o f calcite cementation, silicification and 

dolomitization in the Turner Valley Formation as discussed earlier in this chapter. 

Furthermore, widespread burial anhydritization occurred in the Turner Valley Formation. 

The petrographic results show that it formed contemporaneously with massive 

dolomitization. The mechanism of anhydritization and dolomitization shows that is not 

impossible that meteoric water first flushed evaporative units in the overlying strata and 

then mixed with seawater. The mixing fluids were the sources of burial anhydritization 

as well as dolomitization. The sulfate possibly precipitated first, and was then followed 

by dolomitization as discussed before. The evidence from fluid inclusions also support 

low temperature dolomitization.

Summary of Massive Dolomitization

In summary, the sabkha model is an unlikely model for massive dolomitization because 

of its spatial restrictions. Reflux of brines is not applicable since it conflicts with the 

petrographic and geochemical results. The burial dolomitization model, especially 

suggested by Illing (1959), Mattes and Mountjoy (1980) where dolomitizing fluids come 

from deep basinal compaction contradicts the facts. Meteoric water could have played 

an important role in diagenesis. However, it should be pointed out that the burial 

environment could exist during massive dolomitization. The Mount Head Formation has 

a thickness of several hundred meters, even if, the basin was in the exposure and erosion
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during late Mississippian or early Pennsylvanian, most of the Turner Valley Formation 

was still covered by upper strata. Hence, the burial diagenesis of the Turner Valley 

Formation could have been a continuous process, which not only caused patchy 

dolomitization but also was maintained during massive dolomitization. This is how patchy 

dolomite would grade to massive dolomite. In other words, massive dolomitization 

formed in both burial (shallow to intermediate) and mixing zone environments. The 

freshwater recharged through younger Mississippian strata and percolated through the 

younger rocks, then mixed with seawater in the Turner Valley Formation. The mixed 

fluids supersaturated with respect to calcite, silica, sulfate and dolomite, and 

consequently calcite cementation, silicification, anhydritization and dolomitization 

occurred successively in the Turner Valley Formation. The supersaturated fluids stopped 

at the surface of the Shunda Formation, because it consists predominantly of micritic 

limestones and evaporites, and acted as an aquiclude. This is why replacive dolomite 

should be so largely confined to the Turner Valley Formation relative to other 

Mississippian strata.

4.4.4 Megadolomite

Megadolomite, including coarse dolomite rhombs and crinoid-moldic dolomite is very 

small in volume (< 5 % ), and is the youngest generation o f dolomite. Megadolomite 

crosscuts stylolite II. In turn, stylolite II crosscuts pervasive matrix dolomite, hence 

stylolite II is believed to have formed after pervasive matrix dolomite at deeper burial. 

Therefore, any other model except burial dolomitization is not reasonable for 

megadolomite. The results from fluid inclusions also provide evidence of the high 

temperature of megadolomite formation. Since megadolomite is small in volume and most 

coarse rhombs are replacements of pervasive matrix dolomite, dolomitization did not 

need much dolomitizing fluids and Mg ions. The moderate *7Sr/“ Sr values of 

megadolomite also rule out the possibility o f fluids from deeper basin. The most possible 

source is that dolomitization for megadolomite fluids derived from the relicts of massive 

dolomitization and burial anhydritization fluids because megadolomite usually coexists 

with and replaces pervasive matrix dolomite and burial anhydrite. In addition, burial
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anhydrite, massive dolomite, and megadolomite have close *7Sr/MSr values. However, 

fluids for megadolomite were already different from those for massive dolomitization and 

anhydritization, having higher Na and Sr concentrations released from the processes of 

massive dolomitization and higher Fe2* and MnJ+ contents due to the increase of 

reducing condition with depth (chapter III). And the water-rock ratios were larger in 

megadolomitization. This is why megadolomite has higher Na, Sr, Fe, and Mn contents 

slightly higher " S r^ S r  and more negative 5I80  than pervasive matrix dolomite.

4.5 SUMMARY

There are four types or generations of dolomite in the Turner Valley Formation. They 

formed at different stages and in different environments with distinguishable 

characteristics. The evolution of dolomitization fluids is exhibited in Fig. 4.4. The 

temperatures ~f formation and mean 6l80  values of dolomites are listed in Table 4.1. The 

temperature ot microdolomite was cited from modern sabkha environments (Mckenzie, 

1981); the temperature of megadolomite was from 3.10.1; other results were discussed 

in 3.10.5.1. In Figure 4.4, it is c’?ar that dolomitization fluids became more negative 

from microdolomite to patchy dolomite to massive dolomite. If  megadolomite had formed 

at the similar temperatures (e.g., <  50°C) as other dolomite, it would have the most 

negative 5,80  values of dolomitization fluids. However, from the results o f fluid 

inclusions, megadolomite formed at relatively higher temperatures (116°C). The higher 

it formed, the more positive its formation fluids could have been.

Table 4.1. Temperatures of formation and 5180  values o f dolomites.

<5lsO per mil PDB Temperature (°C)

Microdolomite -0.9 35-40

Patchy -2.19 35

Massive -3.5 40

Megadolomite -4.5 >  50 (116?)
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Fig. 4.2. Equilibrium relationship between 6lt0  o f  dolomite, temperature 

and 51!0  o f  fluid. X-axis represents temperature 5U0  value o f diagenetic 

fluids; y-axis represents temperatures o f  dolomitization. The curved lines 

represent 5I!0  values (PDB) for dolomite calculated from equation 

(1) (section 3.10.5.1).

EVAPORATION

Fig. 4.3. The simplified origin and evolution o f various types of dolomite. 

0  calcitic skeletal fragments; EH lime mud; shadow-moldic porosity.
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The simplified formation and evolution of dolomitization in the Turner Valley Formation 

are also demonstrated in Figure 4.5. As the Mississippian seawater was evaporated, 

microdolomite formed penecontemporaneously in a sabkha environment in the earliest 

stage (I). Then the sedimentary basin subsided or sea level rose, younger Mississippian 

strata (e.g., Mount Head Formation) were deposited and covered the Turner Valley 

sediments. As burial depth increased, some metastable minerals (Mg-calcite and 

aragonite) in skeletal limestones began to dissolve, and patchy dolomite formed at the site 

of Mg and fluid availability; meanwhile, in fine grained mudstones, large-scale physical 

compaction and thickness-reduction accompanied by the nucleation of micro-dolomite 

crystals. When the Mississippian marine deposition was over, the sedimentary basin at 

least locally rose, whereas burial diagenesis and patchy dolomitization in the Turner 

Valley still continued. As freshwater recharged and mixed with seawater in the Turner 

Valley Formation, then massive dolomitization occurred widely succeeding to patchy 

dolomitization. If enough Mg-bearing fluids and time were available, stage IV formed, 

otherwise the process stopped in stage III (this coincides with the mode in the 

development o f dolomite-related porosity in chapter V): in grainstones, dolomite replaced 

skeletal grains forming ghost texture; in mudstones (and also microdolomite), strong 

dolomitization occuned and fine crystals recrystallized and developed syntaxial 

overgrowth rims. Then the basin subsided again and received younger sediments (post- 

Mississippian). Increased burial depths (>  1000 m) caused deep burial diagenesis such 

as stylolite II. As temperature and pressure increased, the relicts of fluids became 

supersaturated with respect to dolomite again, and dolomitized crinoids, replaced matrix 

dolomite, and/or precipitated in some voids, forming megadolomite. At the same time, 

older generations o f dolomite such as microdolomite, patchy dolomite, and even 

pervasive matrix dolomite might have recrystallized and developed one more syntaxial 

overgrowth rim provided there was the availability o f diagenetic fluids.
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CHAPTER V 
POROSITY AND POROSITY EVOLUTION

5.1 INTRODUCTION

The Turner Valley Formation is an important hydrocarbon reservoir with abundant 

reservoir porosity in the Western Canadian Basin. The Turner Valley carbonates are 

characterized by a spatially heterogeneous distribution of porosity and permeability. The 

porosity range varies from 0.1 to 18 %, whereas permeability changes considerably 

from 0 to 270 millidarcys (ESSO). Porosity and permeability are usually influenced by 

sedimentation, diagenesis, and probably structural factors. The porosity and reservoir 

characteristics o f the Turner Valley Formation are predominantly controlled by diagenetic 

processes, especially by dolomitization. Hence, it is significant to understand diagenetic 

processes and events for the porosity evolution in the Turner Valley Formation.

The classification o f porosity used in this study is based on that of Choquette and Pray 

(1970) and Longman (1981). Seven primary and diagenetic (secondary) types of porosity 

are observed. The primary porosity includes intergranular porosity and intragranular 

porosity; while secondary porosity includes intercrystalline porosity, moldic porosity, 

vuggy, stylolitic and fracture porosities.

5.2 PRIMARY POROSITY

Primary porosity forms during sedimentary processes. In the Turner Valley Formation, 

significant primary porosity is rare, only being preserved in skeletal grainstones and 

packstones. Much of the porosity was either destroyed or/and occluded by cementation, 

compaction and other diagenetic processes.

In tera ranu lar Porosity 

This type o f porosity is the pore between grains/particles. In the Turner Valley 

Formation, intergranular porosity is rarely preserved, usually occluded by syntaxial 

overgrowth cement o f skeletal grains, poikilotopic cement and burial anhydrite and
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dolomite.

In tragranular Porosity 

This type of porosity is the pore within individual grains/particles and is observed in 

some fossils such as corals, brachiopods, bryozoan and crinoid fragments. However, 

most of the porosity is filled by micrite spar and equant cements. Intragranular porosity 

is rarely preserved.

5.3 SECONDARY (DIAGENETIC) POROSITY

Secondary porosity is formed during diagenetic processes and/or during structural 

events. This type of porosity is much more abundant and important than primary porosity 

in the Turner Valley Formation.

Intercrvstalline Porosity 

Intercrystalline porosity occurs between crystals (dolomite) o f relatively similar size. 

This type of porosity is usually present in partially to completely dolomitized limestones 

(Plates 3.11 and  3.15). Good permeability was also developed, especially in a sucrosic 

texture of dolomite with euhedral and subhedral crystals.

Moldic Porosity and Vuegv Porosttv

Moldic porosity is formed by selective removal (solution) of fossil fragments, 

particularly those grains consisting of metastable minerals (aragonite and Mg-calcite). 

Some moldic porosity is filled by calcite and burial anhydrite cements. The shape and 

size of moldic porosity depend on those o f the dissolved grains (Plate 5.1).

Vuggy porosity is an irregular, large pore visible to the naked eye. It is formed by the 

dissolution of fossil fragments, calcite cements, and even burial anhydrite (R ate  5.2).

Stvlolltic Porosity

Porosity occurs along stylolites. Stylolites can contain porosity and serve as significant 

pathways for diagenetic fluids. Like fractures, stylolites may yield relatively high 

permeability.
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Plate 5.1. Core photography of moldic porosity. Scale in cm. Core 14-12, 

depth 2153 m.

Plate 5.2. Core photography o f vuggy porosity, scale in cm. Core 14-12, 

depth 2156 m.
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Fracture Porosity

Fracturing is widely presented in the Turner Valley Formation. Early fractures are 

small in size and are usually filled by calcite cements. Later fractures are larger in size 

and are often partially filled or open, and acted as effective channels to deliver diagenetic 

fluids and connect isolated vugs, and increased permeability of rocks significantly.

5.4 POROSITY EVOLUTION DURING DIAGENESIS

During diagenesis, porosity is predominantly controlled by diagenetic processes. Much 

of the primary porosity has been obliterated ana/or enhanced; meanwhile, significant 

secondary porosity has been created. Various diagenetic events have acted differently for 

porosity evolution o f the Turner Valley carbonate reservoir (Fig. 5.1).

Compaction

Compaction is an important process of primary porosity reduction by increasing 

overburden stresses, especially on uncemented carbonate sediments. Early mechanical 

compaction can result in significant porosity reduction, especially in lime muds. The 

initial porosity could be reduced by compaction up to 30 % (Shinn and Robbin, 1983 in 

Tucker et al., 1989). Chemical compaction further reduces porosity by producing fabrics 

such as concavo-convex and fitted fabric contacts between skeletal grains. However, 

chemical compaction may also create porosity, such as in dissolution seams and 

stylolites.Though the porosity is rare, permeabilities could increase considerably.

Cementation

Cementation is the precipitation of authigenic minerals in carbonate rocks. Kence 

cementation is another important process for reducing primary porosity. Syntaxial 

overgrowth cement, the earliest cement, and poikilotopic cement often fill some of the 

intergranular porosity between skeletal grains or oolites, whereas micritizadon occludes 

much intragranular porosity. Equant calcite cement usually fills fractures, and blocky 

cement, bladed prismatic cement and coarse calcite spar usually occupy moldic porosity
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Fig. 5.1. Porosity and various diagenetic events.
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and vuggy porosity.

Anhydritization

Burial anhydritization has provided a significant influence on the reservoir and porosity 

development. Anhydrite is distributed in all facies and usually coexists with pervasive 

matrix dolomite, and is formed in multiple stages. Anhydrite formed as both a 

replacement and a cement. Pre-massive dolomite anhydritization replaced calcite skeletal 

grains, cements and also occluded some intergranular porosity; whereas post-massive 

dolomite anhydrite, although small in volume, occupies some porosity (e.g., moldic and 

vuggy) created by dolomitization. Where anhydrite is present there will often be lower 

porosity in dolomitized limestones of the Turner Valley Formation.

O ther diagenetic events and Porosity 

Other diagenetic events such as silicification, fracturing and dissolution have some 

influence on the porosity evolution. Silicification is small in volume, but local 

silicification usually makes reservoirs poor due to its presence in pore space, and its 

more stable nature to resist dissolution. Fracturing usually increases porosity, but early 

fractures are filled by calcite cementation. Later fractures are often partially open, which 

increases permeability considerably as well as porosity. Dissolution always improves 

reservoir porosity. Like fracturing, early pores resulting from dissolution are filled by 

cements, late dissolution especially related to massive dolomitization, could have created 

reservoir-related porosities.

Dolomitization and Porosity Evolution 

After cementation and compaction, the primary porosity of the Turner Valley 

Formation decreased considerably, possibly to be under 5%, which was further reduced 

by burial anhydritization, probably ranging from 0 to 5%, because the porosity of the 

Turner Valley poorly dolomitized limestones is usually very low ( <  1%).

The influence o f dolomite on porosity development is much more complex and 

significant (Moore, 1989). In dolomite rocks, three types of porosity are usually
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observed, intercrystalline, moldic and vuggy porosity. Of these, intercrystalline porosity 

is the most common and important, whereas moldic porosity and vuggy porosity are 

concentrated in some parts, and locally enhance reservoirs in the Turner Valley 

Formation. Figure 5.2 demonstrates the relationship between porosity and the proportion 

of dolomite in the Turner Valley carbonates. From the diagram (Fig. 5.2), porosity 

initially increases very slowly, or does not change or even decreases as dolomite 

proportion increases to 70 %, then porosity increases apparently with increasing 

dolomite proportion after that point. In order to explain the results above, we should 

understand the texture, arrangement, proportion and distribution o f dolomite, and even 

the processes and mechanism of dolomitization in carbonates. In dolomite rocks, the 

euhedral form and uniformity in size of the dolomite rhombohedra (usually known as a 

"sucrosic" texture), are striking in comparison with calcite crystals o f limestones, which 

are o f less regular sizes and shapes. Hence, more porosity is supposed to exist between 

dolomite crystals than between calcite crystals of lim estone. Naturally, if growth of 

euhedral dolomite crystals continues, the rhombohedral shape would become more 

complex polyhedral forms (anhedral) to form compromise boundaries, which probably 

happens at higher temperatures (Sibley and Gregg, 1987). This situation will decrease 

porosity and make the reservoir poor, however is not present in the Turner Valley 

Formation.

When the volume of dolomite crystals is small (e.g., <20% ) in limestones, poiosity of 

limestone would decrease rather than increase. This is because dolomite crystals are 

sparsely distributed, where they could occlude and fill primary porosity (e.g., 

intergranular porosity) and secondary porosity (e.g., porosity in dissolution seams). As 

dolomite percentage increases (still less than 70%), porosity would partially increase due 

to the concentration of dolomite crystals with a sucrosic texture. However, porosity in 

carbonate is still low because the concentrations o f dolomite crystals are only locally 

distributed due to the small dolomite proportion, and much of the space between dolomite 

crystals is still occupied by calcite components. As the dolomite content further increases 

above 70 %, the rhombohedral crystals increasingly come into contact and provide a 

supporting framework, thus preventing compaction. Furthermore, intercrystalline porosity

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1*

16-
■

14-

ia-

to-
£
I

o

0
CL

■■
■

■ 11
m

m
m

90 1008020 30 40 80 60 70
Dolomite Proportion <%)

10

20

ie ■

ie-

14 -

SP 12- 

^  10 -f)
2o
CL

e- ■
■ I I

■

m

10 20 30 40 GO 60 70
Dolomite Proportion (%)

80 90 100

Fig. 5 .2 . Variation o f  porosity and dolomite percentage o f  the Turner 

Valley carbonates, (a) Showing three wells, and (b) one well (12-22) o f 

the Q uirk Creek field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

is produced by dissolution of calcite components or/and as a result of volume decrease 

accompanying dolomitization (Weyl, 1960).

The critical question for the understanding of dolomite-related porosity is the dissolution 

o f calcite between dolomite rhombs. If the interrhomb calcite is lost by dissolution 

unrelated to dolomitization, then why does the increase o f porosity only occur in 

carbonates with a high dolomite percentage (more than 70 %) rather than in those with 

less dolomite proportion? Therefore, concurrent dissolution o f calcite has occurred during 

dolomitization. If  dolomitization fluids are not abundant enough or/and less accessible 

to limestones, the dolomitization fluids are only enough for selective replacement of 

limestones, dolomitization would occur less completely ( < 7 0  %). However, if enough 

dolomitization fluids are available and accessible, they have not only massively replaced 

the dominant calcite phases but have also been able to dissolve the calcite components 

between those dolomitized calcitic components, then dolomitization would proceed more 

completely ( > 7 0  %). In other words, only more complete dolomitization in limestone 

could result in truly "sucrosic" dolomite texture, thus causing high porosity and 

permeability. This interpretation not only fits fairly well the porosity data presented for 

the Turner Valley carbonates, but also agrees with the conclusion in chapter IV that the 

percentage of dolomite is related to the accessibility and the amount o f dolomitization 

fluids.

Further widespread dolomitization after massive dolomitization could destroy the 

dolomite-related porosity, because, on the one hand, massive dolomite would undergo 

strong recrystallization, and the euhedral crystals could continue to grow to anhedral 

crystals, especially at higher temperatures (Sibley and Gregg, 1987), a discussion of this 

is beyond this thesis. On the other hand, a later generation o f dolomitization could fill 

the pores as a cement or/and destroy intercrystalline porosity as a replacement o f massive 

dolomite. Although megadolomite is small in volume, because it usually replaces massive 

dolomite and fills some voids, it may have reduced some reservoir porosity in the Turner 

Valley Formation. Perhaps this is why the points o f highest porosity are not concentrated 

around 100 % dolomite (Fig. 5.2).

Furthermore, in spite o f the presence o f burial anhydrite, the trend of porosity
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distribution in dolomitized limestones and dolomite rocks has been little affected. The 

best reason is that major burial anhydritization formed before massive dolomitization, and 

replaced calcite components. Hence, its amount and presence are equal to those of 

skeletal grains and calcite cements preserved in those completely dolomitized carbonates.

Figure. 5.3 shows the relationship between porosity and depth. This relation has been 

investigated by many researchers (e.g., Scholle, 1977; Garrison, 1981). The relationship 

shows that porosity decreases with increasing depth. However, because significant 

porosity is dolomitization-related in the Turner Valley Formation, thus the relationship 

becomes complex. On the one hand, because higher dolomite percentage has higher 

porosity as discussed above, and while the proportion of dolomite decreases downward 

as discussed in chapter IV, dolomitization enhances the trend o f porosity decrease with 

increasing depth. On the other hand, some more completely dolomitized limestones are 

present in the bottom and the lower parts of the Turner Valley Formation, and some 

limestones in the upper parts o f the Turner Valley Formation have been less dolomitized. 

Therefore, some points in the diagram (Fig. 5.3) do not fall on the general trend.

5.5 SUMMARY

Most primary porosities were destroyed and/or occluded during the complex processes 

of diagenesis of the Turner Valley Formation. Some diagenetic events benefit reservoirs 

and some make reservoirs poor in the Turner Valley Formation (Fig. 5.1). The relatively 

well preserved primary pores including intergranular porosity and intragranular porosity 

but are rare. Secondary porosity is much higher and more important, including 

intercrystalline porosity, moldic porosity, vuggy, stylolitic and fracture porosities. 

Intercrystalline porosity is the most abundant and widespread, moldic porosity is also 

important for reservoirs in the Turner Valley Formation.

Compaction is an important process for reducing porosity, although chemical 

compaction can also create some local porosity and increase permeability. Calcite 

cementation also reduces porosity. Early cementation usually filled primary porosity, 

whereas late cements often occupied both primary and secondary porosities. Silicification 

locally reduced primary and secondary porosities. Burial anhydrite acted as late cements
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for porosity development in the Turner Valley Formation, reducing primary and 

secondary porosities. Fracturing and dissolution usually increase porosity.

Dolomitization is a  complex and significant process for porosity evolution in the Turner 

Valley Formation. Porosity increases very slowly, even decreases (dolomite <  20 %), 

until dolomite percentage reaches around 70%. After that point, porosity increases 

apparently with increasing dolomite percentage. Hence, the reservoir porosity is believed 

to be dolomite-related, where the amount and accessibility o f dolomitization fluids are 

critical for the abundance of reservoir porosity as well as dolomite proportion in the 

Turner Valley carbonates.
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CHAPTER VI 
CONCLUSIONS AND REMARKS

6.1 CONCLUSIONS 

This study has first documented, based on previous work, the presence of a sabkha 

facies, and has been the first to identify four types or generations o f dolomite which have 

been developed associated with various diagenetic fluids and environments. Significant 

conclusions have been reached concerning sedimentology and diagenesis o f the Turner 

Valley Formation based on the study of petrography and geochemistry.

1. The Turner Valley carbonate sequence consists of a shallowing-upward sequence 

deposited in a marginal, shallow shelf (bank) from an open marine shoal grading to 

lagoon and sabkha environments.

2. The Turner Valley sediments consist predominantly o f five lithofacies: grainstone, 

packstone, wackestone, mudstone, and sabkha facies.

3. Twenty-five diagenetic phases (fabrics) were observed. These phases and their relative 

temporal relationships are listed in Table (3.3).

4. Initial diagenesis of the Turner Valley sediments occurred in the marine environment 

where micritization (micrite envelope) and syntaxial overgrowth rims developed on 

skeletal grains.

5. Bladed prismatic cement, blocky calcite cement, vein cement, coarse mosaic calcite 

spar and poikilotopic cement were all formed during early, shallow burial and were 

probably associated with meteoric water and organic activity. They are composed o f non- 

ferroan low-Mg calcite with strongly negative 5180  and 513C and similar trace element 

concentrations to crinoids.

6. Physical and chemical compaction fabrics were observed in the Turner Valley 

Formation. They are accompanied by other diagenetic events (e.g., patchy dolomite with 

fitted fabrics, anhydrite with stylolite II).

7. Diagenetic silicification is present as nodules, irregular masses, nodule bands parallel 

to bedding with various thicknesses, and occurred in multiple stages in the Turner Valley
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Formation: length-slow chalcedony, megaquartz, microquartz, length-fast chalcedony and 

macroquartz. All types of silica are interpreted to have formed in relatively early stages 

after calcite cements, and patchy dolomite, and before massive dolomite, possibly 

associated with a mixing zone.

8. Burial anhydritization has a wide distribution and mainly formed in two stages in the 

Turner Valley Formation. Early anhydrite (stage I) formed before massive 

dolomitization, replacing calcite skeletal grains and cements, and filling fracture II; late 

anhydrite (stage II) formed after massive dolomitization and filled stylolite II. Both stages 

of burial anhydritization may have resulted from the dissolution of primary sulfates in 

the Turner Valley Formation and its overlying strata by the percolating o f meteoric 

water.

9. Fracturing was widely observed in the Turner Valley Formation, occurring in several 

stages. Fractures may have acted as conduits for various diagenetic fluids and even as 

a trap of hydrocarbons, though fractures are quantitatively unimportant.

10. Dissolution has created significant porosity for the reservoirs of the Turner Valley 

Formation. O f all dissolution processes, that one related to massive dolomitization is the 

most important.

11. Dolomitization is the most important diagenetic event in the Turner Valley 

Formation. Four types or generations of dolomite are identified: microdolomite, patchy 

dolomite, pervasive matrix dolomite and megadolomite. All of them are non-ferroan 

dolomite with dull CL.

12. Microdolomite is interpreted to have formed in an evaporative marine environment 

(sabkha) with unequivocal petrographic evidence and geochemical results. It underwent 

recrystallization during later stages o f dolomitization.

13. Patchy dolomite could have formed at shallow burial, based on its petrographic and 

geochemical results and also underwent later modification.

14. Massive dolomite is the most abundant and reservoir-related type of dolomite. A 

mixing-zone model and subsurface burial environment have been suggested for massive 

dolomitization.

15. Megadolomite is the last generation and the coarsest type o f dolomite, and formed
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in deeper burial environment with elevated temperatures.

16. Primary porosity and secondary porosity are observed in the Turner Valley 

Formation. Where secondary porosity is more important and controls the reservoir 

properties. Of all secondary porosities, intercrystalline and moldic porosities are the most 

significant. The abundance and development of reservoir porosity are controlled by the 

intensity or degree o f dolomitization, in turn, the degree o f dolomitization depends on 

the amount and accessibility of dolomitization fluids. Therefore, the further search for 

potential reservoirs in the Turner Valley Formation should concentrate on more 

completely dolomitized carbonates (>  70% and <  95%).

6.2 REMARKS

Dolomite is still a key problem in carbonate studies, although its study has been 

improved tremendously since more models, such as mixing-zone and subsurface 

compaction, have been proposed in recent decades. Meanwhile, people have become 

more and more confused by various views and conclusions o f dolomitization. It is 

necessary to offer some hypotheses for people to understand and solve the "dolomite 

problem". However, the facts and assumptions should first be distinguished; only to 

emphasize one model or suggestion and ignore other possibilities and facts would mislead 

the further study of dolomite and dolomitization.

In general, I have a lot of beautiful memories related to my stay in Windsor, although 

I also had a very hard time. My study here not only gave me a  new starting for my 

professional career, but also let me believe more in what a great man said, "no matter 

how hard the problem is, I only wish I have a confidence to conquer it!"

I enjoyed my study here! A lot of fun!
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APPENDIX I

Chemical and Isotopic Results

Abbreviations:

Lith: lithology 

Cri.Cal: Calcitic Crinoids 

Cem.Cal: Calcitic Cement 

Mic.Dol: Microdolomite 

Ptc.Dol: Patchy Dolomite 

Ms.Dol: massive Dolomite 

Meg.Dol: Megadolomite
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APPENDIX II

Description of Studied Cores (6-7, 12-22 and 14-12).
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2061m

2081 ■

2 1 0 1  -

2121  -

2141 -

2161

Well 14-12

u
JO
E4J

8.o.
D

XE<u
2
u
I

T 1
r z x

XET
Dolomitized mudstones interbedded with 

grainstones/packstones._________________

3ZZ

Mount Head Formation

Massively dolomitized grainstones/packstones,

Several cycles of dolomitized coarse- to fine- 
skeletal limestones.

Laminated, dolomitized mudstones.

J .SET 7
Fine grained, dolomitized grainstones/ 

packstones with anhydrite nodules._____
X

2 Dolomitized packstones/grainstones 
interbedded with mudstones/wackstones.

/ / Dolomitized grainstones/packstones. Some cherts
Z Z T

I <30

Coarse- to fine-grained, dolomitized skeletal 
limestones with anhydrite nodules.

±
co
2
W

T
A
'A 1 *1

s

Several cycles of coarse- to fine-grained 
upward, dolomitized skeletal limestones with 
anhydrite nodules.

Shunda F.
Very sharp, abrupt contact from mudstones of 
Shunda to coarse, dolomitized skeletal limestone 
of Turner Valley Formation.
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1958m-

1978 -

1998 -

2018 -

2 01',8

2058

2078

Mount 
Head F.

T T -

T~~ T

T — .I

1= r= L

Well 6-7

Microdolomite, collapse breccia, chert nodules.

Microdolomite, primary anhydrite.

&
E0>
S

§

I

in,
r  ■ i

Completely dolomitized mudstones/wackstones 
interbedded with packstones/grainstones, some 
chert nodules.

7—85— 7
Dolomitized packstones/grainstones with some 
chert and secondary anhydrite nodules.

ZL
Massively dolomitized, laminated mudstones

r 1 Li
/  <SD

: x

Massively dolomitized, laminated mudstones
interbedded with fine-grained grainsones/ 
packstones. Some chert-nodule at the top.
Dolomitized fine-grained grainstones/packstones 
and some mudstones/wackstones.

J5L
X

' f l  7 7  
/ to
^ T " a r

Medium- to coarse-grained, dolomitized 
packstones/grainstones interbedded with some 
wackstones.

X
~Q~7

t B
Z _ g

Coarse-grained, partially dolomitized 
packstones and grainstones.

L _ _ r x 2

Shunda F.
Laminated, partially dolomitized mudstones 
with primary anhydrite.
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1886m*

1906 ■

1926 -

1946 -

1966

1986

2006

Well 12-22
Mount 
Head F.

White, anhedral anhydrite, and 
dark microdolomite.

' i ' Massively dolomitized mudstones interbedded 
with microdolomite/primary anhydrite.' i > r

■ t ‘ >

-- r 1 -
JS
E»

—. 1 ---- £.

— 7

ft

- j .— 7 .
Completely dolomitized mudstones/wackstones 
interbedded with packstones/grainstones. Some 
secondary anhydrite and chert nodules.

- / V —

*
' .qp-fc—

7 - ^ A
^ r ~ ~ .

“ V
Fine- to coarse-grained, dolomitized packstones 
and grainstones.

/  » /
7— ^7--f ■ ■ i. / ■

■l / P s ~
< B /  +  \/ i Massively dolomitized mudstones/wackstones.

U.
JS
E

•o

T t r -
- !  i '

Laminated, massively dolomitized mudstones/ 
wackstones interbedded with microdoloraite, and 
fine-grained packstones/grainstones.

7 /
/  .
<3/

1 + )
- L - t *
7 7 ' /  /

2 / ^ —/

Fine-upward, dolomitized skeletal limestones 
with some secondary anhydrite.

I ® /  _
a  r

a  /  *■

1 ^A /  ®

I 
E

lk
to

n

/, /

Dolomitized wackstones interbedded with
/

/  T 7
a  ;

■ -5 " / packstones/grainstones.
- i — - *
^—7— /~r■| ^ -y -J

Medium- to coarse-grained, dolomitized.1 r _f—UL
/ L

- f t r h
grainstones/packstones.

Shunda F. Burrowed mudstones with primary anhydrite.
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